Arid
DOI10.3390/agronomy12030628
Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions
Fathizad, Hassan; Taghizadeh-Mehrjardi, Ruhollah; Ardakani, Mohammad Ali Hakimzadeh; Zeraatpisheh, Mojtaba; Heung, Brandon; Scholten, Thomas
通讯作者Fathizad, H
来源期刊AGRONOMY-BASEL
EISSN2073-4395
出版年2022
卷号12期号:3
英文摘要Soil organic carbon (SOC) is an essential property of soil, and understanding its spatial patterns is critical to understanding vegetation management, soil degradation, and environmental issues. This study applies a framework using remote sensing data and digital soil mapping techniques to examine the spatiotemporal dynamics of SOC for the Yazd-Ardakan Plain, Iran, from 1986 to 2016. Here, a conditioned Latin hypercube sampling method was used to select 201 sampling sites. A set of 37 environmental predictors were obtained from Landsat imagery taken in 1986, 1999, 2010 and 2016. Here, SOC was modeled for 2016 using the Random Forest (RF), support vector regression (SVR), and artificial neural networks (ANN) machine-learners by correlating environmental predictors with soil data. The results showed that RF yielded the highest accuracy (R-2 = 0.53), compared to the other two learners. By performing a variable importance analysis of the RF model, normalized difference vegetation index, modified vegetation index, and ground-adjusted vegetation index were determined to be the most important environmental predictors. By applying the model calibrated from 2016 data to 1986, 1999 and 2010, the results showed a substantial decrease in SOC; these decreases in SOC were mainly attributed to land use changes and agricultural activities.
英文关键词random forest machine learning spatial distribution variable importance analysis vegetation index temporal change
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000775512000001
WOS关键词MATTER ; PREDICTION ; FOREST ; INDEX ; OPTIMIZATION ; SALINITY
WOS类目Agronomy ; Plant Sciences
WOS研究方向Agriculture ; Plant Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/391732
推荐引用方式
GB/T 7714
Fathizad, Hassan,Taghizadeh-Mehrjardi, Ruhollah,Ardakani, Mohammad Ali Hakimzadeh,et al. Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions[J],2022,12(3).
APA Fathizad, Hassan,Taghizadeh-Mehrjardi, Ruhollah,Ardakani, Mohammad Ali Hakimzadeh,Zeraatpisheh, Mojtaba,Heung, Brandon,&Scholten, Thomas.(2022).Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions.AGRONOMY-BASEL,12(3).
MLA Fathizad, Hassan,et al."Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions".AGRONOMY-BASEL 12.3(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fathizad, Hassan]的文章
[Taghizadeh-Mehrjardi, Ruhollah]的文章
[Ardakani, Mohammad Ali Hakimzadeh]的文章
百度学术
百度学术中相似的文章
[Fathizad, Hassan]的文章
[Taghizadeh-Mehrjardi, Ruhollah]的文章
[Ardakani, Mohammad Ali Hakimzadeh]的文章
必应学术
必应学术中相似的文章
[Fathizad, Hassan]的文章
[Taghizadeh-Mehrjardi, Ruhollah]的文章
[Ardakani, Mohammad Ali Hakimzadeh]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。