Arid
DOI10.3390/agriculture12121971
Deep Machine Learning for Forecasting Daily Potential Evapotranspiration in Arid Regions, Case: Atacama Desert Header
Pino-Vargas, Edwin; Taya-Acosta, Edgar; Ingol-Blanco, Eusebio; Torres-Rua, Alfonso
通讯作者Pino-Vargas, E
来源期刊AGRICULTURE-BASEL
EISSN2077-0472
出版年2022
卷号12期号:12
英文摘要Accurately estimating and forecasting evapotranspiration is one of the most important tasks to strengthen water resource management, especially in desert areas such as La Yarada, Tacna, Peru, a region located at the head of the Atacama Desert. In this study, we used temperature, humidity, wind speed, air pressure, and solar radiation from a local weather station to forecast potential evapotranspiration (ETo) using machine learning. The Feedforward Neural Network (Multi-Layered Perceptron) algorithm for prediction was used under two approaches: direct and indirect. In the first one, the ETo is predicted based on historical records, and the second one predicts the climate variables upon which the ETo calculation depends, for which the Penman-Monteith, Hargreaves-Samani, Ritchie, and Turc equations were used. The results were evaluated using statistical criteria to calculate errors, showing remarkable precision, predicting up to 300 days of ETo. Comparing the performance of the approaches and the machine learning used, the results obtained indicate that, despite the similar performance of the two proposed approaches, the indirect approach provides better ETo forecasting capabilities for longer time intervals than the direct approach, whose values of the corresponding metrics are MAE = 0.033, MSE = 0.002, RMSE = 0.043 and RAE = 0.016.
英文关键词evapotranspiration forecasting machine learning deep learning arid zones
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000900219400001
WOS关键词EVAPORATION ; CLIMATES ; CROP
WOS类目Agronomy
WOS研究方向Agriculture
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/391714
推荐引用方式
GB/T 7714
Pino-Vargas, Edwin,Taya-Acosta, Edgar,Ingol-Blanco, Eusebio,et al. Deep Machine Learning for Forecasting Daily Potential Evapotranspiration in Arid Regions, Case: Atacama Desert Header[J],2022,12(12).
APA Pino-Vargas, Edwin,Taya-Acosta, Edgar,Ingol-Blanco, Eusebio,&Torres-Rua, Alfonso.(2022).Deep Machine Learning for Forecasting Daily Potential Evapotranspiration in Arid Regions, Case: Atacama Desert Header.AGRICULTURE-BASEL,12(12).
MLA Pino-Vargas, Edwin,et al."Deep Machine Learning for Forecasting Daily Potential Evapotranspiration in Arid Regions, Case: Atacama Desert Header".AGRICULTURE-BASEL 12.12(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pino-Vargas, Edwin]的文章
[Taya-Acosta, Edgar]的文章
[Ingol-Blanco, Eusebio]的文章
百度学术
百度学术中相似的文章
[Pino-Vargas, Edwin]的文章
[Taya-Acosta, Edgar]的文章
[Ingol-Blanco, Eusebio]的文章
必应学术
必应学术中相似的文章
[Pino-Vargas, Edwin]的文章
[Taya-Acosta, Edgar]的文章
[Ingol-Blanco, Eusebio]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。