Arid
DOI10.1007/978-3-030-86976-2_5
Comparable Study of Pre-trained Model on Alzheimer Disease Classification
Odusami, Modupe; Maskeliunas, Rytis; Damasevicius, Robertas; Misra, Sanjay
通讯作者Odusami, M (corresponding author),Kaunas Univ Technol, Dept Multimedia Engn, Kaunas, Lithuania.
会议名称21st International Conference on Computational Science and Its Applications (ICCSA)
会议日期SEP 13-16, 2021
会议地点Cagliari, ITALY
英文摘要The Alzheimer's disease (AD) is a type of dementia that affects millions of people worldwide every year and the occurrence will continue to be on the increase. The move to diagnose people suffering from AD at an earlier stage has been a daunting problem in mental health. In recent years, the advancement of deep learning in the likes of convolutional neural networks (CNN) has made a great effort towards an early detection of AD using magnetic resonance imaging (MRI) data. However, due to the need for highly discriminative features from MR images, it is still challenging to accurately use CNNs by training from scratch for early detection of AD. This paper aims to improve the early detection of Alzheimer's disease using deep learning for neuroimaging data. We have utilized the SqueezeNet, ResNet18, AlexNet, Vgg11, DenseNet, and InceptionV3 pre-trained models to automatically classify MR images. To validate our model, we experimented with the MR images obtained from the Open Access Series of Imaging Studies (OASIS) database. The average classification accuracy derived by SqueezeNet model for training and testing was 99.38% and 82.53% for binary class and multiclass, respectively.
英文关键词Alzheimer disease CNN Dementia MR imaging Transfer learning
来源出版物COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT V
ISSN0302-9743
EISSN1611-3349
出版年2021
卷号12953
ISBN978-3-030-86976-2; 978-3-030-86975-5
出版者SPRINGER INTERNATIONAL PUBLISHING AG
类型Proceedings Paper
语种英语
收录类别CPCI-S
WOS记录号WOS:000728364200005
WOS关键词TOMOGRAPHY
WOS类目Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods ; Mathematics, Applied
WOS研究方向Computer Science ; Mathematics
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/379066
作者单位[Odusami, Modupe; Maskeliunas, Rytis] Kaunas Univ Technol, Dept Multimedia Engn, Kaunas, Lithuania; [Damasevicius, Robertas] Vytautas Magnus Univ, Dept Appl Informat, Kaunas, Lithuania; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota, Nigeria
推荐引用方式
GB/T 7714
Odusami, Modupe,Maskeliunas, Rytis,Damasevicius, Robertas,et al. Comparable Study of Pre-trained Model on Alzheimer Disease Classification[C]:SPRINGER INTERNATIONAL PUBLISHING AG,2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Odusami, Modupe]的文章
[Maskeliunas, Rytis]的文章
[Damasevicius, Robertas]的文章
百度学术
百度学术中相似的文章
[Odusami, Modupe]的文章
[Maskeliunas, Rytis]的文章
[Damasevicius, Robertas]的文章
必应学术
必应学术中相似的文章
[Odusami, Modupe]的文章
[Maskeliunas, Rytis]的文章
[Damasevicius, Robertas]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。