Arid
DOI10.1109/EUROCON52738.2021.9535571
Aerosol Optical Depth Forecast over Global Dust Belt Based on LSTM, CNN-LSTM, CONV-LSTM and FFT Algorithms
Daoud, Nour; Eltahan, Mohamed; Elhennawi, Ahmed
通讯作者Daoud, N (corresponding author),Ain Shams Univ, Comp Engn Dept, Cairo, Egypt.
会议名称19th International Conference on Smart Technologies (IEEE EUROCON)
会议日期JUL 06-08, 2021
会议地点Lviv, UKRAINE
英文摘要Aerosols are sources of the uncertainty in the global atmosphere and climate. They have many critical health, economic and social impacts. In this paper, we assess prediction of temporal monthly of Aerosol Optical Depth (AOD) over four dust sources within the global dust belt using three different algorithms. The three models are long-short term memory (LSTM), Convolutional neural networks-long-short term memory (CNN-LSTM) and Convolutional long-short term memory (ConvLSTM). Classical Fast Fourier Transform (FFT) algorithm for time series predication is compared to the three neural networks models. Grid search is used to find the optimal internal weights for the proposed neural network algorithms. The four dust sources are Eastern Libyan Desert, Saudi Arabia Peninsula, Indian subcontinent and China. Monthly temporal (2005-2021) AOD product from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis is selected for training and validation periods. The presented models for AOD predication show efficient performance and cheap solution from computational point of view. However, ConvLSTM algorthims shows the least RMSE within +/- 10%.
英文关键词LSTM CNN-LSTM ConvLSTM Aerosol optical depth (AOD) Global dust sources Global dust belt
来源出版物IEEE EUROCON 2021 - 19TH INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES
出版年2021
ISBN978-1-6654-3299-3
出版者IEEE
类型Proceedings Paper
语种英语
收录类别CPCI-S
WOS记录号WOS:000728121700034
WOS关键词SIMULATIONS ; PREDICTION ; RETRIEVAL ; MODEL
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS研究方向Computer Science ; Engineering ; Telecommunications
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/379065
作者单位[Daoud, Nour] Ain Shams Univ, Comp Engn Dept, Cairo, Egypt; [Eltahan, Mohamed] Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany; [Elhennawi, Ahmed] Deggendorf Inst Technol, Fac Comp Sci, Deggendorf, Germany
推荐引用方式
GB/T 7714
Daoud, Nour,Eltahan, Mohamed,Elhennawi, Ahmed. Aerosol Optical Depth Forecast over Global Dust Belt Based on LSTM, CNN-LSTM, CONV-LSTM and FFT Algorithms[C]:IEEE,2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Daoud, Nour]的文章
[Eltahan, Mohamed]的文章
[Elhennawi, Ahmed]的文章
百度学术
百度学术中相似的文章
[Daoud, Nour]的文章
[Eltahan, Mohamed]的文章
[Elhennawi, Ahmed]的文章
必应学术
必应学术中相似的文章
[Daoud, Nour]的文章
[Eltahan, Mohamed]的文章
[Elhennawi, Ahmed]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。