Arid
DOI10.1109/IJCNN52387.2021.9534191
Localized Motion Artifact Reduction on Brain MRI Using Deep Learning with Effective Data Augmentation Techniques
Zhao, Yijun; Ossowski, Jacek; Wang, Xuming; Li, Shangjin; Devinsky, Orrin; Martin, Samantha P.; Pardoe, Heath R.
通讯作者Zhao, YJ (corresponding author),Fordham Univ, 113 60th St, New York, NY 10023 USA.
会议名称International Joint Conference on Neural Networks (IJCNN)
会议日期JUL 18-22, 2021
会议地点ELECTR NETWORK
英文摘要In-scanner motion degrades the quality of magnetic resonance imaging (MRI) thereby reducing its utility in the detection of clinically relevant abnormalities. We collaborate with doctors from NYU Langone's Comprehensive Epilepsy Center and apply a deep learning-based MRI artifact reduction model (DMAR) to correct head motion artifacts in brain MRI scans. Specifically, DMAR employs a two-stage approach: in the first, degraded regions are detected using the Single Shot Multibox Detector (SSD), and in the second, the artifacts within the found regions are reduced using a convolutional autoencoder (CAE). We further introduce a set of novel data augmentation techniques to address the high dimensionality of MRI images and the scarcity of available data. As a result, our model was trained on a large synthetic dataset of 225,000 images generated using 375 whole brain T1-weighted MRI scans from the OASIS-1 dataset. DMAR visibly reduces image artifacts when validated using real-world artifact-affected scans from the multi-center ABIDE study and proprietary data collected at NYU. Quantitatively, depending on the level of degradation, our model achieves a 27.8%-48.1% reduction in RMSE and a 2.88-5.79 dB gain in PSNR on a 5000-sample set of synthetic images. For real-world data without ground-truth, our model reduced the variance of image voxel intensity within artifact-affected brain regions (p = 0.014 ).
英文关键词MRI motion artifact reduction deep learning object detection k-space
来源出版物2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)
ISSN2161-4393
出版年2021
ISBN978-0-7381-3366-9
出版者IEEE
类型Proceedings Paper
语种英语
开放获取类型Green Submitted
收录类别CPCI-S
WOS记录号WOS:000722581707016
WOS关键词CNN
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS研究方向Computer Science ; Engineering
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/379064
作者单位[Zhao, Yijun; Wang, Xuming; Li, Shangjin] Fordham Univ, 113 60th St, New York, NY 10023 USA; [Ossowski, Jacek] QS Investors LLC, New York, NY 10022 USA; [Devinsky, Orrin; Martin, Samantha P.; Pardoe, Heath R.] NYU, Grossman Sch Med, 145 East 32nd St, New York, NY USA
推荐引用方式
GB/T 7714
Zhao, Yijun,Ossowski, Jacek,Wang, Xuming,et al. Localized Motion Artifact Reduction on Brain MRI Using Deep Learning with Effective Data Augmentation Techniques[C]:IEEE,2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Yijun]的文章
[Ossowski, Jacek]的文章
[Wang, Xuming]的文章
百度学术
百度学术中相似的文章
[Zhao, Yijun]的文章
[Ossowski, Jacek]的文章
[Wang, Xuming]的文章
必应学术
必应学术中相似的文章
[Zhao, Yijun]的文章
[Ossowski, Jacek]的文章
[Wang, Xuming]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。