Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1109/JSTARS.2021.3137187 |
Identifying Soil Freeze/Thaw States Using Scattering and Coherence Time Series of High-Resolution C-Band Synthetic Aperture Radar in the Qinghai-Tibet Plateau | |
Zhou, Xin; Zhang, Zhengjia; Shen, Qikai; Chen, Qihao; Liu, Xiuguo | |
通讯作者 | Zhou, X (corresponding author),China Univ Geosci, Sch Geog & Informat Engn, Wuhan 430074, Peoples R China. |
来源期刊 | IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
![]() |
ISSN | 1939-1404 |
EISSN | 2151-1535 |
出版年 | 2022 |
卷号 | 15 |
英文摘要 | The soil freeze/thaw (F/T) cycles play an important role in the climate system and human activities. However, the harsh environment in the Qinghai-Tibet Plateau (QTP) poses great challenges for both in-situ observation and remote-sensing monitoring of the soil F/T process. In this article, the time series of scattering and coherence of the high-resolution Sentinel-1 C-band synthetic aperture radar (SAR) is analyzed to identify the soil F/T state. The time series of scattering, including intensity and decomposition parameters, and coherence, are analyzed based on three typical landcover types (i.e., desert, grassland, and meadow) in the QTP. They are given the mathematical description by second-order and fourth-order Fourier functions, respectively. Based on Fourier functions, the initial F/T time points of the soil are detected in each pixel to draw the F/T map of the entire study area. The experiment results are cross-validated with the initial F/T time points of the soil calculated from the MODIS land surface temperatures, showing that the differences in days are less than one revisit cycle of Sentinel-1 (i.e., 12 days). Furthermore, the possible impacts of environmental factors acquired from the Wudaoliang meteorological station, including air temperature, ground surface temperature, snow depth, and precipitation, on scattering and coherence are discussed. This study explores that Sentinel-1 has great potential for soil F/T monitoring in the QTP, which can indicate F/T states of the surface soil as well as F/T information of the deeper soil with a high spatial-temporal resolution. |
英文关键词 | Soil Synthetic aperture radar Scattering Monitoring Remote sensing Time series analysis Snow Coherence Qinghai-Tibet Plateau (QTP) scattering Sentinel-1 soil freeze thaw (F T) cycle synthetic aperture radar (SAR) time series |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000739632400002 |
WOS关键词 | NASA SCATTEROMETER NSCAT ; NORTHERN-HEMISPHERE ; PERMAFROST ; FROZEN ; LANDSCAPE ; SURFACE ; CLASSIFICATION ; VARIABILITY ; CYCLES ; MODIS |
WOS类目 | Engineering, Electrical & Electronic ; Geography, Physical ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/376827 |
作者单位 | [Zhou, Xin; Zhang, Zhengjia; Shen, Qikai; Chen, Qihao; Liu, Xiuguo] China Univ Geosci, Sch Geog & Informat Engn, Wuhan 430074, Peoples R China |
推荐引用方式 GB/T 7714 | Zhou, Xin,Zhang, Zhengjia,Shen, Qikai,et al. Identifying Soil Freeze/Thaw States Using Scattering and Coherence Time Series of High-Resolution C-Band Synthetic Aperture Radar in the Qinghai-Tibet Plateau[J],2022,15. |
APA | Zhou, Xin,Zhang, Zhengjia,Shen, Qikai,Chen, Qihao,&Liu, Xiuguo.(2022).Identifying Soil Freeze/Thaw States Using Scattering and Coherence Time Series of High-Resolution C-Band Synthetic Aperture Radar in the Qinghai-Tibet Plateau.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,15. |
MLA | Zhou, Xin,et al."Identifying Soil Freeze/Thaw States Using Scattering and Coherence Time Series of High-Resolution C-Band Synthetic Aperture Radar in the Qinghai-Tibet Plateau".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 15(2022). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。