Arid
DOI10.5194/hess-26-505-2022
Regionalization of hydrological model parameters using gradient boosting machine
Song, Zhihong; Xia, Jun; Wang, Gangsheng; She, Dunxian; Hu, Chen; Hong, Si
通讯作者Xia, J ; Wang, GS
来源期刊HYDROLOGY AND EARTH SYSTEM SCIENCES
ISSN1027-5606
EISSN1607-7938
出版年2022
卷号26期号:2页码:505-524
英文摘要The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins. The commonly used multiple linear regression (MLR) method may not be applicable in complex and nonlinear relationships between model parameters and watershed properties. Moreover, most regionalization methods assume lumped parameters for each catchment without considering within-catchment heterogeneity. Here we incorporated the Penman- Monteith-Leuning (PML) equation into the Distributed Time Variant Gain Model (DTVGM) to improve the mechanistic representation of the evapotranspiration (ET) process. We calibrated six key model parameters, grid by grid across China, using a multivariable calibration strategy which incorporates spatiotemporal runoff and ET datasets (0.25 degrees; monthly) as reference. In addition, we used the gradient boosting machine (GBM), a machine learning technique, to portray the dependence of model parameters on soil and terrain attributes in four distinct climatic zones across China. We show that the modified DTVGM could reasonably estimate the runoff and ET over China using the calibrated parameters but performed better in humid rather than arid regions for the validation period. The regionalized parameters by the GBM method exhibited better spatial coherence relative to the calibrated grid-by-grid parameters. In addition, GBM outperformed the stepwise MLR method in both parameter regionalization and gridded runoff simulations at a national scale, though the improvement pertaining to watershed streamflow validation is not significant due to most of the watersheds being located in humid regions. We also revealed that the slope, saturated soil moisture content, and elevation are the most important explanatory variables to inform model parameters based on the GBM approach. The machine-learning-based regionalization approach provides an effective alternative to deriving hydrological model parameters from watershed properties, particularly in ungauged regions.
类型Article
语种英语
开放获取类型gold, Green Submitted
收录类别SCI-E
WOS记录号WOS:000751424000001
WOS关键词UNGAUGED CATCHMENTS ; VEGETATION DYNAMICS ; CLIMATE-CHANGE ; LARGE-SCALE ; RESPONSE CHARACTERISTICS ; CONTINUOUS STREAMFLOW ; GLOBAL OPTIMIZATION ; FILTERING METHOD ; WATER-BALANCE ; RIVER-BASIN
WOS类目Geosciences, Multidisciplinary ; Water Resources
WOS研究方向Geology ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/376495
推荐引用方式
GB/T 7714
Song, Zhihong,Xia, Jun,Wang, Gangsheng,et al. Regionalization of hydrological model parameters using gradient boosting machine[J],2022,26(2):505-524.
APA Song, Zhihong,Xia, Jun,Wang, Gangsheng,She, Dunxian,Hu, Chen,&Hong, Si.(2022).Regionalization of hydrological model parameters using gradient boosting machine.HYDROLOGY AND EARTH SYSTEM SCIENCES,26(2),505-524.
MLA Song, Zhihong,et al."Regionalization of hydrological model parameters using gradient boosting machine".HYDROLOGY AND EARTH SYSTEM SCIENCES 26.2(2022):505-524.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Zhihong]的文章
[Xia, Jun]的文章
[Wang, Gangsheng]的文章
百度学术
百度学术中相似的文章
[Song, Zhihong]的文章
[Xia, Jun]的文章
[Wang, Gangsheng]的文章
必应学术
必应学术中相似的文章
[Song, Zhihong]的文章
[Xia, Jun]的文章
[Wang, Gangsheng]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。