Arid
DOI10.1109/TLA.2022.9693568
Brain Extraction in Multiple T1-weighted Magnetic Resonance Imaging slices using Digital Image Processing techniques
Duarte, Kaue T. N.; Moura, Marinara A. N.; Martins, Paulo S.; de Carvalho, Marco A. G.
通讯作者Duarte, KTN
来源期刊IEEE LATIN AMERICA TRANSACTIONS
ISSN1548-0992
出版年2022
卷号20期号:5页码:831-838
英文摘要Brain Imaging has been source of several studies in the literature, mostly due to its importanceboth to predict and to analyze certain diseases or conditions. Extracting the brain from patient images for medical analysis can provide useful diagnostic and prognostic information.To this end, digital image processing algorithms have been applied to medical tasks with a focus on the identification of the brain. This work proposes a brain extraction framework based on three major steps: 1) Dataset and Image Selection; 2) Preprocessing; and 3) Largest Connected Component extraction. Our data are obtained from the OASIS dataset.The preprocessing step is applied in order to enhance contrast and eliminate possible noise from the T1-weighted MRI. Largest Connected Component extraction is performed by initially detecting the largest element in the image (i.e. the brain gray matter) and then by extracting it through mathematical morphology operators. The unsupervised framework extracts the brain in different axial slices without adjustments. The main contribution of this work is a method using only digital image processing for automatically identifying the brain from several different slices, which differs from the literature since is performed without parameter resetting. Five metrics were applied to evaluate our results: Specificity, Recall, Accuracy, F-Measure, and Precision. In our first experiment, two metrics resulted in more than 90% in efficiency (Specificity and Precision), two of them surpassed 80% (F-Measure and Accuracy), and Sensitivity exceeded 70%. Our second experiment compares our results with those produced by related works, having been ranked in the top positions of Sensitivity and Specificity.
英文关键词Brain Magnetic resonance imaging Histograms Software algorithms Data mining Image edge detection Diseases Image Processing Skull Stripping Brain Extraction Image Segmentation Medical Imaging
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000747446400016
WOS关键词SKULL-STRIPPING PROBLEM
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS研究方向Computer Science ; Engineering
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/376188
推荐引用方式
GB/T 7714
Duarte, Kaue T. N.,Moura, Marinara A. N.,Martins, Paulo S.,et al. Brain Extraction in Multiple T1-weighted Magnetic Resonance Imaging slices using Digital Image Processing techniques[J],2022,20(5):831-838.
APA Duarte, Kaue T. N.,Moura, Marinara A. N.,Martins, Paulo S.,&de Carvalho, Marco A. G..(2022).Brain Extraction in Multiple T1-weighted Magnetic Resonance Imaging slices using Digital Image Processing techniques.IEEE LATIN AMERICA TRANSACTIONS,20(5),831-838.
MLA Duarte, Kaue T. N.,et al."Brain Extraction in Multiple T1-weighted Magnetic Resonance Imaging slices using Digital Image Processing techniques".IEEE LATIN AMERICA TRANSACTIONS 20.5(2022):831-838.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Duarte, Kaue T. N.]的文章
[Moura, Marinara A. N.]的文章
[Martins, Paulo S.]的文章
百度学术
百度学术中相似的文章
[Duarte, Kaue T. N.]的文章
[Moura, Marinara A. N.]的文章
[Martins, Paulo S.]的文章
必应学术
必应学术中相似的文章
[Duarte, Kaue T. N.]的文章
[Moura, Marinara A. N.]的文章
[Martins, Paulo S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。