Arid
DOI10.1145/3466688
Spatial Variability Aware Deep Neural Networks (SVANN): A General Approach
Gupta, Jayant; Molnar, Carl; Xie, Yiqun; Knight, Joe; Shekhar, Shashi
通讯作者Gupta, J (corresponding author),Univ Minnesota, Dept Comp Sci & Engn, 4-192 Keller Hall,200 Union St SE, Minneapolis, MN 55455 USA.
来源期刊ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY
ISSN2157-6904
EISSN2157-6912
出版年2021
卷号12期号:6
英文摘要Spatial variability is a prominent feature of various geographic phenomena such as climatic zones, USDA plant hardiness zones, and terrestrial habitat types (e.g., forest, grasslands, wetlands, and deserts). However, current deep learning methods follow a spatial-one-size-fits-all (OSFA) approach to train single deep neural network models that do not account for spatial variability. Quantification of spatial variability can be challenging due to the influence of many geophysical factors. In preliminary work, we proposed a spatial variability aware neural network (SVANN-I, formerly called SVANN) approach where weights are a function of location but the neural network architecture is location independent. In this work, we explore a more flexible SVANNE approach where neural network architecture varies across geographic locations. In addition, we provide a taxonomy of SVANN types and a physics inspired interpretation model. Experiments with aerial imagery based wetland mapping show that SVANN-I outperforms OSFA and SVANN-E performs the best of all.
英文关键词Neural networks spatial variability
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000754524700009
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS研究方向Computer Science
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/375861
作者单位[Gupta, Jayant; Molnar, Carl; Shekhar, Shashi] Univ Minnesota, Dept Comp Sci & Engn, 4-192 Keller Hall,200 Union St SE, Minneapolis, MN 55455 USA; [Xie, Yiqun] Univ Maryland, Ctr Geospatial Informat Sci, Dept Geog Sci, 1124 Lefrak Hall,7251 Preinkert Dr, College Pk, MD 20742 USA; [Knight, Joe] Univ Minnesota, Dept Forest Resources, 1530 Cleveland Ave N, St Paul, MN 55108 USA
推荐引用方式
GB/T 7714
Gupta, Jayant,Molnar, Carl,Xie, Yiqun,et al. Spatial Variability Aware Deep Neural Networks (SVANN): A General Approach[J],2021,12(6).
APA Gupta, Jayant,Molnar, Carl,Xie, Yiqun,Knight, Joe,&Shekhar, Shashi.(2021).Spatial Variability Aware Deep Neural Networks (SVANN): A General Approach.ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,12(6).
MLA Gupta, Jayant,et al."Spatial Variability Aware Deep Neural Networks (SVANN): A General Approach".ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 12.6(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gupta, Jayant]的文章
[Molnar, Carl]的文章
[Xie, Yiqun]的文章
百度学术
百度学术中相似的文章
[Gupta, Jayant]的文章
[Molnar, Carl]的文章
[Xie, Yiqun]的文章
必应学术
必应学术中相似的文章
[Gupta, Jayant]的文章
[Molnar, Carl]的文章
[Xie, Yiqun]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。