Arid
DOI10.1002/ese3.1009
Prediction of short-term photovoltaic power via codec neural network and mode decomposition based deep learning approach
Li, Jie; Li, RunRan; Jia, YuanJie; Zhang, ZhiXin
通讯作者Li, J (corresponding author), Changan Univ, Sch Elect & Control Engn, Xian 710064, Peoples R China.
来源期刊ENERGY SCIENCE & ENGINEERING
EISSN2050-0505
出版年2021-11
英文摘要Accurate photovoltaic (PV) power prediction is of great significance for the stable operation of PV system, but the PV power sequence is nonstationary, so it is difficult to establish the prediction model effectively by a simple neural network. In this study, the MCVMD-MI-SWATS-Codec (multidimensional constraints variational mode decomposition-mixed initialization-switching from Adam to stochastic gradient descent-codec) that is based on the idea of deep model fusion is proposed to predict PV power generation. MCVMD method with parameter K determined by multidimensional constraint criterion is used to decompose the PV power data, and the frequency of each component sequence is analyzed after decomposition to explore the physical characteristics and application value of each component frequency. Then, a hybrid ResNet-LSTM (residual network-long- and short-term memory) model based on codec mechanism integrates input data with different dimensions, such as weather conditions and historical IMF (intrinsic mode function), into dense vectors with the same dimension. The experimental data of polysilicon PV array in the Australian desert environment are used to test the proposed fusion neural network model and the other six competitive models. The results show that MCVMD algorithm is significantly helpful in decomposing the nonstationary data to improve the prediction accuracy, and MCVMD-MI-SWATS-Codec model has high prediction accuracy and robustness in both stable and unstable weather conditions.
英文关键词codec neural network fusion neural network model multidimensional constraints variational mode decomposition photovoltaic power prediction
类型Article ; Early Access
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000720141500001
WOS关键词SOLAR ; ENERGY ; MULTISTEP ; FORECASTS ; MACHINE
WOS类目Energy & Fuels
WOS研究方向Energy & Fuels
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/374603
作者单位[Li, Jie; Li, RunRan; Jia, YuanJie; Zhang, ZhiXin] Changan Univ, Sch Elect & Control Engn, Xian 710064, Peoples R China
推荐引用方式
GB/T 7714
Li, Jie,Li, RunRan,Jia, YuanJie,et al. Prediction of short-term photovoltaic power via codec neural network and mode decomposition based deep learning approach[J],2021.
APA Li, Jie,Li, RunRan,Jia, YuanJie,&Zhang, ZhiXin.(2021).Prediction of short-term photovoltaic power via codec neural network and mode decomposition based deep learning approach.ENERGY SCIENCE & ENGINEERING.
MLA Li, Jie,et al."Prediction of short-term photovoltaic power via codec neural network and mode decomposition based deep learning approach".ENERGY SCIENCE & ENGINEERING (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Jie]的文章
[Li, RunRan]的文章
[Jia, YuanJie]的文章
百度学术
百度学术中相似的文章
[Li, Jie]的文章
[Li, RunRan]的文章
[Jia, YuanJie]的文章
必应学术
必应学术中相似的文章
[Li, Jie]的文章
[Li, RunRan]的文章
[Jia, YuanJie]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。