Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.rsase.2021.100643 |
Stacked vector multi-source lithologic classification utilizing Machine Learning Algorithms: Data potentiality and dimensionality monitoring | |
Shebl, Ali; Csamer, Arpad | |
通讯作者 | Shebl, A (corresponding author), Univ Debrecen, Dept Mineral & Geol, Debrecen, Hungary. |
来源期刊 | REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT
![]() |
ISSN | 2352-9385 |
出版年 | 2021 |
卷号 | 24 |
英文摘要 | Machine Learning Algorithms (MLAs) have recently introduced considerable lithologic mapping. Thus, this study scrutinizes the efficacy of Artificial Neural Network (ANN), Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM) over hybrid datasets including optical (Sentinel 2, ASTER, Landsat OLI and Earth-observing 1 Advanced Land Imager (ALI)), radar (Sentinel 1 and ALOS PALSAR), DEMs and their derivatives (Slope, and Aspect). The study aims to (1) monitor the effect of data dimensionality in enhancing categorization accuracy. (2) disclose the most efficient MLA and most powerful dataset in labeling rock units accurately. (3) highlight the impact of embedding topographical and radar data in lithologic classification. (4) outline the best relation between the number of training pixels and number of utilized bands, in delivering reliable allocation. To achieve these aims, we selected training and testing pixels meticulously, in concordance with a recently published geological map of the study area. We adopted a stacked vector approach for handling the implemented multi-sensor data. Results show that diversifying information sources raised the classification accuracy by approximately 10% for each classifier. SVM and MLC are much better than ANN. Slope is better than aspect and both are less qualified when compared to DEM. Sentinel 1 (C-band) and ALOS PALSAR (L-band) effects are not so different whatever the implemented polarization. Landsat OLI is less qualified in lithologic classification when compared to Sentinel 2, ASTER and ALI. The utilized training pixels should be at least 30N for (N) channels submitted to the classifiers. |
英文关键词 | Lithologic classification Support vector machine Artificial neural network Maximum likelihood classifier Sentinel 2 Sentinel 1 ASTER |
类型 | Article |
语种 | 英语 |
开放获取类型 | hybrid |
收录类别 | ESCI |
WOS记录号 | WOS:000719811400005 |
WOS关键词 | EASTERN DESERT ; GOLD MINERALIZATION ; ASTER ; ALI ; HYPERION ; IDENTIFICATION ; KURDISTAN ; IMAGERY ; AREA |
WOS类目 | Environmental Sciences ; Remote Sensing |
WOS研究方向 | Environmental Sciences & Ecology ; Remote Sensing |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/374339 |
作者单位 | [Shebl, Ali; Csamer, Arpad] Univ Debrecen, Dept Mineral & Geol, Debrecen, Hungary; [Shebl, Ali] Tanta Univ, Dept Geol, Tanta, Egypt |
推荐引用方式 GB/T 7714 | Shebl, Ali,Csamer, Arpad. Stacked vector multi-source lithologic classification utilizing Machine Learning Algorithms: Data potentiality and dimensionality monitoring[J],2021,24. |
APA | Shebl, Ali,&Csamer, Arpad.(2021).Stacked vector multi-source lithologic classification utilizing Machine Learning Algorithms: Data potentiality and dimensionality monitoring.REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT,24. |
MLA | Shebl, Ali,et al."Stacked vector multi-source lithologic classification utilizing Machine Learning Algorithms: Data potentiality and dimensionality monitoring".REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT 24(2021). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Shebl, Ali]的文章 |
[Csamer, Arpad]的文章 |
百度学术 |
百度学术中相似的文章 |
[Shebl, Ali]的文章 |
[Csamer, Arpad]的文章 |
必应学术 |
必应学术中相似的文章 |
[Shebl, Ali]的文章 |
[Csamer, Arpad]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。