Arid
DOI10.1016/j.rsase.2021.100643
Stacked vector multi-source lithologic classification utilizing Machine Learning Algorithms: Data potentiality and dimensionality monitoring
Shebl, Ali; Csamer, Arpad
通讯作者Shebl, A (corresponding author), Univ Debrecen, Dept Mineral & Geol, Debrecen, Hungary.
来源期刊REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT
ISSN2352-9385
出版年2021
卷号24
英文摘要Machine Learning Algorithms (MLAs) have recently introduced considerable lithologic mapping. Thus, this study scrutinizes the efficacy of Artificial Neural Network (ANN), Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM) over hybrid datasets including optical (Sentinel 2, ASTER, Landsat OLI and Earth-observing 1 Advanced Land Imager (ALI)), radar (Sentinel 1 and ALOS PALSAR), DEMs and their derivatives (Slope, and Aspect). The study aims to (1) monitor the effect of data dimensionality in enhancing categorization accuracy. (2) disclose the most efficient MLA and most powerful dataset in labeling rock units accurately. (3) highlight the impact of embedding topographical and radar data in lithologic classification. (4) outline the best relation between the number of training pixels and number of utilized bands, in delivering reliable allocation. To achieve these aims, we selected training and testing pixels meticulously, in concordance with a recently published geological map of the study area. We adopted a stacked vector approach for handling the implemented multi-sensor data. Results show that diversifying information sources raised the classification accuracy by approximately 10% for each classifier. SVM and MLC are much better than ANN. Slope is better than aspect and both are less qualified when compared to DEM. Sentinel 1 (C-band) and ALOS PALSAR (L-band) effects are not so different whatever the implemented polarization. Landsat OLI is less qualified in lithologic classification when compared to Sentinel 2, ASTER and ALI. The utilized training pixels should be at least 30N for (N) channels submitted to the classifiers.
英文关键词Lithologic classification Support vector machine Artificial neural network Maximum likelihood classifier Sentinel 2 Sentinel 1 ASTER
类型Article
语种英语
开放获取类型hybrid
收录类别ESCI
WOS记录号WOS:000719811400005
WOS关键词EASTERN DESERT ; GOLD MINERALIZATION ; ASTER ; ALI ; HYPERION ; IDENTIFICATION ; KURDISTAN ; IMAGERY ; AREA
WOS类目Environmental Sciences ; Remote Sensing
WOS研究方向Environmental Sciences & Ecology ; Remote Sensing
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/374339
作者单位[Shebl, Ali; Csamer, Arpad] Univ Debrecen, Dept Mineral & Geol, Debrecen, Hungary; [Shebl, Ali] Tanta Univ, Dept Geol, Tanta, Egypt
推荐引用方式
GB/T 7714
Shebl, Ali,Csamer, Arpad. Stacked vector multi-source lithologic classification utilizing Machine Learning Algorithms: Data potentiality and dimensionality monitoring[J],2021,24.
APA Shebl, Ali,&Csamer, Arpad.(2021).Stacked vector multi-source lithologic classification utilizing Machine Learning Algorithms: Data potentiality and dimensionality monitoring.REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT,24.
MLA Shebl, Ali,et al."Stacked vector multi-source lithologic classification utilizing Machine Learning Algorithms: Data potentiality and dimensionality monitoring".REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT 24(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shebl, Ali]的文章
[Csamer, Arpad]的文章
百度学术
百度学术中相似的文章
[Shebl, Ali]的文章
[Csamer, Arpad]的文章
必应学术
必应学术中相似的文章
[Shebl, Ali]的文章
[Csamer, Arpad]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。