Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/w13233379 |
Improving Drought Modeling Using Hybrid Random Vector Functional Link Methods | |
Adnan, Rana Muhammad; Mostafa, Reham R.; Islam, Abu Reza Md. Towfiqul; Gorgij, Alireza Docheshmeh; Kuriqi, Alban; Kisi, Ozgur | |
通讯作者 | Kisi, O (corresponding author), Univ Appl Sci, Dept Civil Engn, D-23562 Lubeck, Germany. ; Kisi, O (corresponding author), Ilia State Univ, Dept Civil Engn, Tbilisi 0162, Georgia. |
来源期刊 | WATER
![]() |
EISSN | 2073-4441 |
出版年 | 2021 |
卷号 | 13期号:23 |
英文摘要 | Drought modeling is essential in water resources planning and management in mitigating its effects, especially in arid regions. Climate change highly influences the frequency and intensity of droughts. In this study, new hybrid methods, the random vector functional link (RVFL) integrated with particle swarm optimization (PSO), the genetic algorithm (GA), the grey wolf optimization (GWO), the social spider optimization (SSO), the salp swarm algorithm (SSA) and the hunger games search algorithm (HGS) were used to forecast droughts based on the standard precipitation index (SPI). Monthly precipitation data from three stations in Bangladesh were used in the applications. The accuracy of the methods was compared by forecasting four SPI indices, SPI3, SPI6, SPI9, and SPI12, using the root mean square errors (RMSE), the mean absolute error (MAE), the Nash-Sutcliffe efficiency (NSE), and the determination coefficient (R-2). The HGS algorithm provided a better performance than the alternative algorithms, and it considerably improved the accuracy of the RVFL method in drought forecasting; the improvement in RMSE for the SPI3, SP6, SPI9, and SPI12 was by 6.14%, 11.89%, 14.14%, 24.5% in station 1, by 6.02%, 17.42%, 13.49%, 24.86% in station 2 and by 7.55%, 26.45%, 15.27%, 13.21% in station 3, respectively. The outcomes of the study recommend the use of a HGS-based RVFL in drought modeling. |
英文关键词 | drought modeling standard precipitation index random vector functional link hunger games search algorithm |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000734661800001 |
WOS关键词 | PREDICTION ; OPTIMIZATION ; ALGORITHM ; SPI ; IMPLEMENTATION ; TEMPERATURE ; CHALLENGES ; REGRESSION |
WOS类目 | Environmental Sciences ; Water Resources |
WOS研究方向 | Environmental Sciences & Ecology ; Water Resources |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/373944 |
作者单位 | [Adnan, Rana Muhammad] Guangzhou Univ, Sch Econ & Stat, Guangzhou 510006, Peoples R China; [Adnan, Rana Muhammad] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Peoples R China; [Mostafa, Reham R.] Mansoura Univ, Fac Comp & Informat Sci, Informat Syst Dept, Mansoura 35516, Egypt; [Islam, Abu Reza Md. Towfiqul] Begum Rokeya Univ, Dept Disaster Management, Rangpur 5400, Bangladesh; [Gorgij, Alireza Docheshmeh] Univ Sistan & Baluchestan, Fac Ind & Min Khash, Zahedan 9816745845, Iran; [Kuriqi, Alban] Univ Lisbon, Inst Super Tecn, CERIS, P-1049001 Lisbon, Portugal; [Kisi, Ozgur] Univ Appl Sci, Dept Civil Engn, D-23562 Lubeck, Germany; [Kisi, Ozgur] Ilia State Univ, Dept Civil Engn, Tbilisi 0162, Georgia |
推荐引用方式 GB/T 7714 | Adnan, Rana Muhammad,Mostafa, Reham R.,Islam, Abu Reza Md. Towfiqul,et al. Improving Drought Modeling Using Hybrid Random Vector Functional Link Methods[J],2021,13(23). |
APA | Adnan, Rana Muhammad,Mostafa, Reham R.,Islam, Abu Reza Md. Towfiqul,Gorgij, Alireza Docheshmeh,Kuriqi, Alban,&Kisi, Ozgur.(2021).Improving Drought Modeling Using Hybrid Random Vector Functional Link Methods.WATER,13(23). |
MLA | Adnan, Rana Muhammad,et al."Improving Drought Modeling Using Hybrid Random Vector Functional Link Methods".WATER 13.23(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。