Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3389/fenvs.2021.679189 |
Dryland Watershed Restoration With Rock Detention Structures: A Nature-based Solution to Mitigate Drought, Erosion, Flooding, and Atmospheric Carbon | |
Gooden, Jennifer; Pritzlaff, Richard | |
通讯作者 | Gooden, J (corresponding author), Biophilia Fdn, Chester, MD 21619 USA. ; Gooden, J (corresponding author), Cuenca Los Ojos, Pearce, AZ 85625 USA. ; Gooden, J (corresponding author), Borderlands Restorat Network, Patagonia, AZ 85624 USA. |
来源期刊 | FRONTIERS IN ENVIRONMENTAL SCIENCE
![]() |
EISSN | 2296-665X |
出版年 | 2021 |
卷号 | 9 |
英文摘要 | Historic land degradation is an ongoing threat to the Sky Islands of southern Arizona, US, and northern Sonora, Mexico, an area designated as a globally significant biodiversity hotspot. Land degradation has reduced ecosystem services provisioning, released carbon from disturbed soils into the atmosphere, and significantly diminished resilience to climate change. Private land managers in the region have developed methods to reverse degradation and restore biodiversity and ecosystem function. Land managers have used rock detention structures (RDS), technology adapted from traditional Indigenous practices in the region, as a tool for reversing desertification and watershed degradation. The structures were installed primarily for erosion control and water management, but they have had positive impacts on multiple biophysical systems. In this study, we analyze watershed-scale installation of RDS as a nature-based solution for climate change mitigation and adaptation. Case studies include four properties that offer examples of structures that have been in place over a period ranging from 1 to 40 years. We reviewed journal articles and other studies conducted at the four sites, supplemented with interviews, to catalogue the nature-based solutions provided by RDS. This study documents positive impacts on overall stream flow, reduction in peak runoff during inundation events, and increased sedimentation, which increase resilience to drought, erosion, and flooding. Data suggest potential impacts for climate change mitigation, though further research is needed. In addition, results suggest that watershed restoration with RDS offers a host of co-benefits, including an increase in biodiversity and wildlife abundance, an increase in vegetative cover, and increased surface water provisioning over time to support the land-based livelihoods of downstream neighbors. In the discussion, we consider barriers to replication and scalability using the strategy of the UN Decade on Ecosystem Restoration as a guiding framework, discussing issues of awareness, legislation and policy, technical capacity, finance, and gaps in knowledge. |
英文关键词 | natural climate solution ecosystem services (ES) erosion control structure riverine wetlands carbon sequestration carbon market conservation finance |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000720043200001 |
WOS关键词 | ECOSYSTEM SERVICES ; CHECK DAMS ; MANAGEMENT ; IMPACTS |
WOS类目 | Environmental Sciences |
WOS研究方向 | Environmental Sciences & Ecology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/373835 |
作者单位 | [Gooden, Jennifer; Pritzlaff, Richard] Biophilia Fdn, Chester, MD 21619 USA; [Gooden, Jennifer] Cuenca Los Ojos, Pearce, AZ 85625 USA; [Gooden, Jennifer; Pritzlaff, Richard] Borderlands Restorat Network, Patagonia, AZ 85624 USA |
推荐引用方式 GB/T 7714 | Gooden, Jennifer,Pritzlaff, Richard. Dryland Watershed Restoration With Rock Detention Structures: A Nature-based Solution to Mitigate Drought, Erosion, Flooding, and Atmospheric Carbon[J],2021,9. |
APA | Gooden, Jennifer,&Pritzlaff, Richard.(2021).Dryland Watershed Restoration With Rock Detention Structures: A Nature-based Solution to Mitigate Drought, Erosion, Flooding, and Atmospheric Carbon.FRONTIERS IN ENVIRONMENTAL SCIENCE,9. |
MLA | Gooden, Jennifer,et al."Dryland Watershed Restoration With Rock Detention Structures: A Nature-based Solution to Mitigate Drought, Erosion, Flooding, and Atmospheric Carbon".FRONTIERS IN ENVIRONMENTAL SCIENCE 9(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。