Arid
DOI10.3390/rs13224683
Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform
Aghababaei, Masoumeh; Ebrahimi, Ataollah; Naghipour, Ali Asghar; Asadi, Esmaeil; Verrelst, Jochem
通讯作者Ebrahimi, A (corresponding author), Shahrekord Univ, Fac Nat Resources & Earth Sci, Dept Range & Watershed Management, Shahrekord 8818634141, Iran.
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2021
卷号13期号:22
英文摘要Vegetation Types (VTs) are important managerial units, and their identification serves as essential tools for the conservation of land covers. Despite a long history of Earth observation applications to assess and monitor land covers, the quantitative detection of sparse VTs remains problematic, especially in arid and semiarid areas. This research aimed to identify appropriate multi-temporal datasets to improve the accuracy of VTs classification in a heterogeneous landscape in Central Zagros, Iran. To do so, first the Normalized Difference Vegetation Index (NDVI) temporal profile of each VT was identified in the study area for the period of 2018, 2019, and 2020. This data revealed strong seasonal phenological patterns and key periods of VTs separation. It led us to select the optimal time series images to be used in the VTs classification. We then compared single-date and multi-temporal datasets of Landsat 8 images within the Google Earth Engine (GEE) platform as the input to the Random Forest classifier for VTs detection. The single-date classification gave a median Overall Kappa (OK) and Overall Accuracy (OA) of 51% and 64%, respectively. Instead, using multi-temporal images led to an overall kappa accuracy of 74% and an overall accuracy of 81%. Thus, the exploitation of multi-temporal datasets favored accurate VTs classification. In addition, the presented results underline that available open access cloud-computing platforms such as the GEE facilitates identifying optimal periods and multitemporal imagery for VTs classification.
英文关键词vegetation types classification multi-temporal images machine learning Google Earth Engine NDVI
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000728602500001
WOS关键词CLASSIFICATION ; PERFORMANCE ; SENTINEL-2
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/373699
作者单位[Aghababaei, Masoumeh; Ebrahimi, Ataollah; Naghipour, Ali Asghar; Asadi, Esmaeil] Shahrekord Univ, Fac Nat Resources & Earth Sci, Dept Range & Watershed Management, Shahrekord 8818634141, Iran; [Verrelst, Jochem] Univ Valencia, Image Proc Lab IPL, Parc Cient, Paterna 46980, Spain
推荐引用方式
GB/T 7714
Aghababaei, Masoumeh,Ebrahimi, Ataollah,Naghipour, Ali Asghar,et al. Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform[J],2021,13(22).
APA Aghababaei, Masoumeh,Ebrahimi, Ataollah,Naghipour, Ali Asghar,Asadi, Esmaeil,&Verrelst, Jochem.(2021).Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform.REMOTE SENSING,13(22).
MLA Aghababaei, Masoumeh,et al."Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform".REMOTE SENSING 13.22(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Aghababaei, Masoumeh]的文章
[Ebrahimi, Ataollah]的文章
[Naghipour, Ali Asghar]的文章
百度学术
百度学术中相似的文章
[Aghababaei, Masoumeh]的文章
[Ebrahimi, Ataollah]的文章
[Naghipour, Ali Asghar]的文章
必应学术
必应学术中相似的文章
[Aghababaei, Masoumeh]的文章
[Ebrahimi, Ataollah]的文章
[Naghipour, Ali Asghar]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。