Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/rs13224683 |
Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform | |
Aghababaei, Masoumeh; Ebrahimi, Ataollah; Naghipour, Ali Asghar; Asadi, Esmaeil; Verrelst, Jochem | |
通讯作者 | Ebrahimi, A (corresponding author), Shahrekord Univ, Fac Nat Resources & Earth Sci, Dept Range & Watershed Management, Shahrekord 8818634141, Iran. |
来源期刊 | REMOTE SENSING
![]() |
EISSN | 2072-4292 |
出版年 | 2021 |
卷号 | 13期号:22 |
英文摘要 | Vegetation Types (VTs) are important managerial units, and their identification serves as essential tools for the conservation of land covers. Despite a long history of Earth observation applications to assess and monitor land covers, the quantitative detection of sparse VTs remains problematic, especially in arid and semiarid areas. This research aimed to identify appropriate multi-temporal datasets to improve the accuracy of VTs classification in a heterogeneous landscape in Central Zagros, Iran. To do so, first the Normalized Difference Vegetation Index (NDVI) temporal profile of each VT was identified in the study area for the period of 2018, 2019, and 2020. This data revealed strong seasonal phenological patterns and key periods of VTs separation. It led us to select the optimal time series images to be used in the VTs classification. We then compared single-date and multi-temporal datasets of Landsat 8 images within the Google Earth Engine (GEE) platform as the input to the Random Forest classifier for VTs detection. The single-date classification gave a median Overall Kappa (OK) and Overall Accuracy (OA) of 51% and 64%, respectively. Instead, using multi-temporal images led to an overall kappa accuracy of 74% and an overall accuracy of 81%. Thus, the exploitation of multi-temporal datasets favored accurate VTs classification. In addition, the presented results underline that available open access cloud-computing platforms such as the GEE facilitates identifying optimal periods and multitemporal imagery for VTs classification. |
英文关键词 | vegetation types classification multi-temporal images machine learning Google Earth Engine NDVI |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000728602500001 |
WOS关键词 | CLASSIFICATION ; PERFORMANCE ; SENTINEL-2 |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/373699 |
作者单位 | [Aghababaei, Masoumeh; Ebrahimi, Ataollah; Naghipour, Ali Asghar; Asadi, Esmaeil] Shahrekord Univ, Fac Nat Resources & Earth Sci, Dept Range & Watershed Management, Shahrekord 8818634141, Iran; [Verrelst, Jochem] Univ Valencia, Image Proc Lab IPL, Parc Cient, Paterna 46980, Spain |
推荐引用方式 GB/T 7714 | Aghababaei, Masoumeh,Ebrahimi, Ataollah,Naghipour, Ali Asghar,et al. Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform[J],2021,13(22). |
APA | Aghababaei, Masoumeh,Ebrahimi, Ataollah,Naghipour, Ali Asghar,Asadi, Esmaeil,&Verrelst, Jochem.(2021).Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform.REMOTE SENSING,13(22). |
MLA | Aghababaei, Masoumeh,et al."Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform".REMOTE SENSING 13.22(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。