Arid
DOI10.1117/12.2518259
Identifying Low-Profile Objects from Low-Light UAS Imagery Using Cascading Deep Learning
Overbey, Lucas A.; Pan, Jean; Lyle, Jamie R.; Campbell, Georgianna; Jaegar, Alan; Jaegar, Ryan; Van Epps, Todd; Ruane, Martin
通讯作者Overbey, LA (corresponding author), Naval Informat Warfare Ctr Atlantic, POB 190022, N Charleston, SC USA.
会议名称30th Conference on Infrared Imaging Systems - Design, Analysis, Modeling, and Testing
会议日期APR 16-18, 2019
会议地点Baltimore, MD
英文摘要Unmanned aircraft systems (UAS) have gained utility in the Navy for many purposes, including facilities needs, security, and intelligence, surveillance, and reconnaissance (ISR). UAS surveys can be employed in place of personnel to reduce safety risks, but they generate significant quantities of data that often require manual review. Research and development of automated methods to identify targets of interest in this type of imagery data can provide multiple benefits, including increasing efficiency, decreasing cost, and potentially saving lives through identification of hazards or threats. This paper presents a methodology to efficiently and effectively identify cryptic target objects from UAS imagery. The approach involves flight and processing of airborne imagery in low-light conditions to find low-profile objects (i.e., birds) in beach and desert-like environments. The object classification algorithms combat the low-light conditions and low-profile nature of the objects of interest using cascading models and a tailored deep convolutional neural network (CNN) architecture. Models were able to identify and count endangered birds (California least terns) and nesting sites on beaches from UAS survey data, achieving negative/positive classification accuracies from candidate images upwards of 97% and an f(1) score for detection of 0:837.
英文关键词deep learning unmanned aircraft systems object detection target identification aerial imagery field monitoring computer vision machine learning
来源出版物INFRARED IMAGING SYSTEMS: DESIGN, ANALYSIS, MODELING, AND TESTING XXX
ISSN0277-786X
EISSN1996-756X
出版年2019
卷号11001
ISBN978-1-5106-2668-3
出版者SPIE-INT SOC OPTICAL ENGINEERING
类型Proceedings Paper
语种英语
收录类别CPCI-S
WOS记录号WOS:000502049700034
WOS类目Optics
WOS研究方向Optics
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/370163
作者单位[Overbey, Lucas A.; Lyle, Jamie R.; Campbell, Georgianna] Naval Informat Warfare Ctr Atlantic, POB 190022, N Charleston, SC USA; [Pan, Jean] Naval Facil Engn & Expeditionary Warfare Ctr, 1100 23rd Ave, Port Hueneme, CA USA; [Jaegar, Alan] Naval Surface Warfare Ctr, Port Hueneme Div, 4363 Missile Way, Port Hueneme, CA USA; [Jaegar, Ryan; Van Epps, Todd] Ventura Cty Educ, 5189 Verdugo Way, Camarillo, CA USA; [Ruane, Martin] Naval Base Ventura Cty, 311 Main Rd 355, Nas Point Mugu, CA USA
推荐引用方式
GB/T 7714
Overbey, Lucas A.,Pan, Jean,Lyle, Jamie R.,et al. Identifying Low-Profile Objects from Low-Light UAS Imagery Using Cascading Deep Learning[C]:SPIE-INT SOC OPTICAL ENGINEERING,2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Overbey, Lucas A.]的文章
[Pan, Jean]的文章
[Lyle, Jamie R.]的文章
百度学术
百度学术中相似的文章
[Overbey, Lucas A.]的文章
[Pan, Jean]的文章
[Lyle, Jamie R.]的文章
必应学术
必应学术中相似的文章
[Overbey, Lucas A.]的文章
[Pan, Jean]的文章
[Lyle, Jamie R.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。