Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1117/12.2519957 |
Hyperspectral vegetation identification at a legacy underground nuclear explosion test site | |
Redman, Brian J.; van der Laan, John D.; Anderson, Dylan Z.; Craven, Julia M.; Miller, Elizabeth D.; Collins, Adam D.; Swanson, Erika M.; Schultz-Fellenz, Emily S. | |
通讯作者 | Redman, BJ (corresponding author), Sandia Natl Labs, 1515 Eubank Blvd SE, Albuquerque, NM 87123 USA. |
会议名称 | 20th Conference on Chemical Biological, Radiological, Nuclear and Explosives (CBRNE) Sensing held at SPIE Defense + Commercial Sensing Conference |
会议日期 | APR 15-17, 2019 |
会议地点 | Baltimore, MD |
英文摘要 | The detection, location, and identification of suspected underground nuclear explosions (UNEs) are global security priorities that rely on integrated analysis of multiple data modalities for uncertainty reduction in event analysis. Vegetation disturbances may provide complementary signatures that can confirm or build on the observables produced by prompt sensing techniques such as seismic or radionuclide monitoring networks. For instance, the emergence of non-native species in an area may be indicative of anthropogenic activity or changes in vegetation health may reflect changes in the site conditions resulting from an underground explosion. Previously, we collected high spatial resolution (10 cm) hyperspectral data from an unmanned aerial system at a legacy underground nuclear explosion test site and its surrounds. These data consist of visible and near-infrared wavebands over 4.3 km(2) of high desert terrain along with high spatial resolution (2.5 cm) RGB context imagery. In this work, we employ various spectral detection and classification algorithms to identify and map vegetation species in an area of interest containing the legacy test site. We employed a frequentist framework for fusing multiple spectral detections across various reference spectra captured at different times and sampled from multiple locations. The spatial distribution of vegetation species is compared to the location of the underground nuclear explosion. We find a difference in species abundance within a 130 m radius of the center of the test site. |
英文关键词 | hyperspectral imagery underground nuclear explosions unmanned aerial systems vegetation classification |
来源出版物 | CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XX |
ISSN | 0277-786X |
EISSN | 1996-756X |
出版年 | 2019 |
卷号 | 11010 |
ISBN | 978-1-5106-2686-7 |
出版者 | SPIE-INT SOC OPTICAL ENGINEERING |
类型 | Proceedings Paper |
语种 | 英语 |
开放获取类型 | Green Submitted |
收录类别 | CPCI-S |
WOS记录号 | WOS:000502066600022 |
WOS关键词 | CLASSIFICATION ; IMAGES ; UAV |
WOS类目 | Chemistry, Applied ; Remote Sensing ; Optics ; Spectroscopy |
WOS研究方向 | Chemistry ; Remote Sensing ; Optics ; Spectroscopy |
资源类型 | 会议论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/370162 |
作者单位 | [Redman, Brian J.; van der Laan, John D.; Anderson, Dylan Z.; Craven, Julia M.] Sandia Natl Labs, 1515 Eubank Blvd SE, Albuquerque, NM 87123 USA; [Miller, Elizabeth D.; Collins, Adam D.; Swanson, Erika M.; Schultz-Fellenz, Emily S.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA |
推荐引用方式 GB/T 7714 | Redman, Brian J.,van der Laan, John D.,Anderson, Dylan Z.,et al. Hyperspectral vegetation identification at a legacy underground nuclear explosion test site[C]:SPIE-INT SOC OPTICAL ENGINEERING,2019. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。