Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1007/978-3-030-32248-9_35 |
U-ReSNet: Ultimate Coupling of Registration and Segmentation with Deep Nets | |
Estienne, Theo; Vakalopoulou, Maria; Christodoulidis, Stergios; Battistela, Enzo; Lerousseau, Marvin; Carre, Alexandre; Klausner, Guillaume; Sun, Roger; Robert, Charlotte; Mougiakakou, Stavroula; Paragios, Nikos; Deutsch, Eric | |
通讯作者 | Estienne, T (corresponding author), Univ Paris Saclay, Cent Supelec, Lab MICS, F-91190 Gif Sur Yvette, France. ; Estienne, T (corresponding author), Paris Saclay Univ, Paris Sud Univ, INSERM, Mol Radiotherapy,Gustave Roussy,U1030, Villejuif, France. |
会议名称 | 10th International Workshop on Machine Learning in Medical Imaging (MLMI) / 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) |
会议日期 | OCT 13-17, 2019 |
会议地点 | Shenzhen, PEOPLES R CHINA |
英文摘要 | In this study, we propose a 3D deep neural network called U-ReSNet, a joint framework that can accurately register and segment medical volumes. The proposed network learns to automatically generate linear and elastic deformation models, trained by minimizing the mean square error and the local cross correlation similarity metrics. In parallel, a coupled architecture is integrated, seeking to provide segmentation maps for anatomies or tissue patterns using an additional decoder part trained with the dice coefficient metric. U-ReSNet is trained in an end to end fashion, while due to this joint optimization the generated network features are more informative leading to promising results compared to other deep learning-based methods existing in the literature. We evaluated the proposed architecture using the publicly available OASIS 3 dataset, measuring the dice coefficient metric for both registration and segmentation tasks. Our promising results indicate the potentials of our method which is composed from a convolutional architecture that is extremely simple and light in terms of parameters. |
英文关键词 | Image registration Deformable registration Brain tumor segmentation 3D convolutional neural networks |
来源出版物 | MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III |
ISSN | 0302-9743 |
EISSN | 1611-3349 |
出版年 | 2019 |
卷号 | 11766 |
页码 | 310-319 |
ISBN | 978-3-030-32248-9; 978-3-030-32247-2 |
出版者 | SPRINGER INTERNATIONAL PUBLISHING AG |
类型 | Proceedings Paper |
语种 | 英语 |
开放获取类型 | Green Submitted |
收录类别 | CPCI-S |
WOS记录号 | WOS:000548733600035 |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Engineering, Biomedical ; Neuroimaging ; Imaging Science & Photographic Technology |
WOS研究方向 | Computer Science ; Engineering ; Neurosciences & Neurology ; Imaging Science & Photographic Technology |
资源类型 | 会议论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/370060 |
作者单位 | [Estienne, Theo; Vakalopoulou, Maria; Battistela, Enzo; Lerousseau, Marvin; Sun, Roger] Univ Paris Saclay, Cent Supelec, Lab MICS, F-91190 Gif Sur Yvette, France; [Estienne, Theo; Battistela, Enzo; Lerousseau, Marvin; Carre, Alexandre; Klausner, Guillaume; Sun, Roger; Robert, Charlotte; Deutsch, Eric] Paris Saclay Univ, Paris Sud Univ, INSERM, Mol Radiotherapy,Gustave Roussy,U1030, Villejuif, France; [Christodoulidis, Stergios; Mougiakakou, Stavroula] Univ Bern, ARTORG Ctr Biomed Engn Res, CH-3008 Bern, Switzerland; [Paragios, Nikos] TheraPanacea, Epiniere Sante Cochin, Paris, France |
推荐引用方式 GB/T 7714 | Estienne, Theo,Vakalopoulou, Maria,Christodoulidis, Stergios,et al. U-ReSNet: Ultimate Coupling of Registration and Segmentation with Deep Nets[C]:SPRINGER INTERNATIONAL PUBLISHING AG,2019:310-319. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。