Arid
DOI10.1007/978-3-030-32248-9_35
U-ReSNet: Ultimate Coupling of Registration and Segmentation with Deep Nets
Estienne, Theo; Vakalopoulou, Maria; Christodoulidis, Stergios; Battistela, Enzo; Lerousseau, Marvin; Carre, Alexandre; Klausner, Guillaume; Sun, Roger; Robert, Charlotte; Mougiakakou, Stavroula; Paragios, Nikos; Deutsch, Eric
通讯作者Estienne, T (corresponding author), Univ Paris Saclay, Cent Supelec, Lab MICS, F-91190 Gif Sur Yvette, France. ; Estienne, T (corresponding author), Paris Saclay Univ, Paris Sud Univ, INSERM, Mol Radiotherapy,Gustave Roussy,U1030, Villejuif, France.
会议名称10th International Workshop on Machine Learning in Medical Imaging (MLMI) / 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
会议日期OCT 13-17, 2019
会议地点Shenzhen, PEOPLES R CHINA
英文摘要In this study, we propose a 3D deep neural network called U-ReSNet, a joint framework that can accurately register and segment medical volumes. The proposed network learns to automatically generate linear and elastic deformation models, trained by minimizing the mean square error and the local cross correlation similarity metrics. In parallel, a coupled architecture is integrated, seeking to provide segmentation maps for anatomies or tissue patterns using an additional decoder part trained with the dice coefficient metric. U-ReSNet is trained in an end to end fashion, while due to this joint optimization the generated network features are more informative leading to promising results compared to other deep learning-based methods existing in the literature. We evaluated the proposed architecture using the publicly available OASIS 3 dataset, measuring the dice coefficient metric for both registration and segmentation tasks. Our promising results indicate the potentials of our method which is composed from a convolutional architecture that is extremely simple and light in terms of parameters.
英文关键词Image registration Deformable registration Brain tumor segmentation 3D convolutional neural networks
来源出版物MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III
ISSN0302-9743
EISSN1611-3349
出版年2019
卷号11766
页码310-319
ISBN978-3-030-32248-9; 978-3-030-32247-2
出版者SPRINGER INTERNATIONAL PUBLISHING AG
类型Proceedings Paper
语种英语
开放获取类型Green Submitted
收录类别CPCI-S
WOS记录号WOS:000548733600035
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Engineering, Biomedical ; Neuroimaging ; Imaging Science & Photographic Technology
WOS研究方向Computer Science ; Engineering ; Neurosciences & Neurology ; Imaging Science & Photographic Technology
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/370060
作者单位[Estienne, Theo; Vakalopoulou, Maria; Battistela, Enzo; Lerousseau, Marvin; Sun, Roger] Univ Paris Saclay, Cent Supelec, Lab MICS, F-91190 Gif Sur Yvette, France; [Estienne, Theo; Battistela, Enzo; Lerousseau, Marvin; Carre, Alexandre; Klausner, Guillaume; Sun, Roger; Robert, Charlotte; Deutsch, Eric] Paris Saclay Univ, Paris Sud Univ, INSERM, Mol Radiotherapy,Gustave Roussy,U1030, Villejuif, France; [Christodoulidis, Stergios; Mougiakakou, Stavroula] Univ Bern, ARTORG Ctr Biomed Engn Res, CH-3008 Bern, Switzerland; [Paragios, Nikos] TheraPanacea, Epiniere Sante Cochin, Paris, France
推荐引用方式
GB/T 7714
Estienne, Theo,Vakalopoulou, Maria,Christodoulidis, Stergios,et al. U-ReSNet: Ultimate Coupling of Registration and Segmentation with Deep Nets[C]:SPRINGER INTERNATIONAL PUBLISHING AG,2019:310-319.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Estienne, Theo]的文章
[Vakalopoulou, Maria]的文章
[Christodoulidis, Stergios]的文章
百度学术
百度学术中相似的文章
[Estienne, Theo]的文章
[Vakalopoulou, Maria]的文章
[Christodoulidis, Stergios]的文章
必应学术
必应学术中相似的文章
[Estienne, Theo]的文章
[Vakalopoulou, Maria]的文章
[Christodoulidis, Stergios]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。