Arid
Hybrid Feature Fusion Using RNN and Pre-trained CNN for Classification of Alzheimer's Disease
Jabason, Emimal; Ahmad, M. Omair; Swamy, M. N. S.
通讯作者Jabason, E (corresponding author), Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada.
会议名称22nd International Conference on Information Fusion (FUSION)
会议日期JUL 02-05, 2019
会议地点Ottawa, CANADA
英文摘要The accurate classification of AD is very essential for both patient and social care, and it will be more significant once the treatment options are available to reverse the progress of the disease. The recent success of deep learning techniques has rapidly advanced the automatic classification of AD using neuroimaging biomarkers such as MRI. However, there exist two major challenges. First, training a deep convolutional neural network (CNN) from scratch relies on a large number of labeled training data to obtain high accuracy without overfitting. Second, due to high computational cost, most of the existing techniques employ 2D CNN that cannot leverage the complete spatial information; hence, it loses the inter-slice correlation. To address these limitations, we combine a recurrent neural network (RNN), specifically long short-term memory (LSTM) on top of the bottleneck layer of pre-trained DenseNet architecture, a deep CNN has already been trained on a large-scale dataset called ImageNet. In addition to the intra-slice features extracted from the deep CNN, the proposed technique exploits the inter-slice features through LSTM in order to discriminate the patients having AD and cognitively normal (CN) clinical status from the brain MRI data. Through experimental results, we show that our proposed model has better performance than state-of-the-art deep learning methods on the Open Access Series of Imaging Studies (OASIS) dataset using 5 -fold cross validation.
英文关键词Alzheimer's disease (AD) Magnetic resonance imaging (MRI) Transfer learning DenseNet Long short-term memory (LSTM) Hybrid feature fusion
来源出版物2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019)
出版年2019
ISBN978-0-9964527-8-6
出版者IEEE
类型Proceedings Paper
语种英语
收录类别CPCI-S
WOS记录号WOS:000567728800142
WOS关键词NETWORKS ; IMAGE
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS研究方向Computer Science ; Engineering
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/369997
作者单位[Jabason, Emimal; Ahmad, M. Omair; Swamy, M. N. S.] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada
推荐引用方式
GB/T 7714
Jabason, Emimal,Ahmad, M. Omair,Swamy, M. N. S.. Hybrid Feature Fusion Using RNN and Pre-trained CNN for Classification of Alzheimer's Disease[C]:IEEE,2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jabason, Emimal]的文章
[Ahmad, M. Omair]的文章
[Swamy, M. N. S.]的文章
百度学术
百度学术中相似的文章
[Jabason, Emimal]的文章
[Ahmad, M. Omair]的文章
[Swamy, M. N. S.]的文章
必应学术
必应学术中相似的文章
[Jabason, Emimal]的文章
[Ahmad, M. Omair]的文章
[Swamy, M. N. S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。