Knowledge Resource Center for Ecological Environment in Arid Area
Attention-based Multi-layer Chinese Word Embedding | |
Ma, Bing; Sun, Haifeng; Wang, Jingyu; Qi, Qi | |
通讯作者 | Ma, B (corresponding author), State Key Lab Networking & Switching Technol, Beijing, Peoples R China. ; Ma, B (corresponding author), Beijing Univ Posts & Telecommun, Beijing, Peoples R China. |
会议名称 | IEEE International Conference on Big Data (Big Data) |
会议日期 | DEC 09-12, 2019 |
会议地点 | Los Angeles, CA |
英文摘要 | Word embedding is a basic task in natural language processing area. Unlike English, Chinese subword units, such as characters, radicals, and components, contain rich semantic information which can be used to enhance word embeddings. However, existing methods neglect the semantic contribution of corresponding subword units to the word. In this work, we employ attention mechanism to capture the semantic structure of Chinese words and propose a novel framework, named Attention-based multi-Layer Word Embedding model(ALWE). We also design an asynchronous strategy for updating embedding arid attention efficiently. Our model learns to share subword information between distinct words selectively and adaptively. Experimental results on the word similarity, word analogy, and text classification show that the proposed model outperforms all baselines, especially when words don't appear frequently. Qualitative analysis further demonstrates the superiority of ALWE. |
英文关键词 | distributed word representation attention mechanism Chinese semantic structure |
来源出版物 | 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) |
ISSN | 2639-1589 |
出版年 | 2019 |
页码 | 2895-2902 |
ISBN | 978-1-7281-0858-2 |
出版者 | IEEE |
类型 | Proceedings Paper |
语种 | 英语 |
收录类别 | CPCI-S |
WOS记录号 | WOS:000554828702114 |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods |
WOS研究方向 | Computer Science |
资源类型 | 会议论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/369984 |
作者单位 | [Ma, Bing; Sun, Haifeng; Wang, Jingyu; Qi, Qi] State Key Lab Networking & Switching Technol, Beijing, Peoples R China; [Ma, Bing; Sun, Haifeng; Wang, Jingyu; Qi, Qi] Beijing Univ Posts & Telecommun, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Ma, Bing,Sun, Haifeng,Wang, Jingyu,et al. Attention-based Multi-layer Chinese Word Embedding[C]:IEEE,2019:2895-2902. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。