Arid
DOI10.1007/s10586-018-1726-x
Estimation method for ET0 with PSO-LSSVM based on the HHT in cold and arid data-sparse area
Wang, Pengxiang; Liu, Chang; Li, Yunkai
通讯作者Li, YK (corresponding author), China Agr Univ, Coll Water Resources & Civil Engn, Beijing 100083, Peoples R China.
来源期刊CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS
ISSN1386-7857
EISSN1573-7543
出版年2019
卷号22页码:S8207-S8216
英文摘要A coupled particle swarm optimization (PSO) least squares support vector machine (LSSVM) model based on the Hilbert-Huang transform (HHT) was established to provide accurate estimations of reference crop evapotranspiration (ET0) in cold and arid areas that lack the required meteorological data. Daily data (2000-2009) from the Hetian Xinjiang meteorological station (China) were used for training and double-day data used for validation. The accuracy of the method was compared with two machine models, the conventional PSO-LSSVM model and a generalized regression neural network, and three empirical methods, the Hargreaves, FAO-24 Penman, and Priestley-Taylor models. Under the condition of the same parameters of meteorological data, the accuracies of the machine models were found better than the empirical models, and the precision of the PSO-LSSVM coupled algorithm based on the HHT was the highest. The relative importance of the prediction elements was Rs > Tmax > Tmin > RH > Wn. When the deletion combination was Tmax/Tmin/RH/Wn, Tmax/RH/Wn, Tmin/Wn, and Wn, the mean square error was 0.407, 0.185, 0.149, 0.135, respectively, which shows this method is adequate for estimating ET0 in data-sparse areas.
英文关键词Reference crop evapotranspiration (ET0) HHT PSO-LSSVM Prediction model
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000502007000052
WOS关键词REFERENCE EVAPOTRANSPIRATION
WOS类目Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS研究方向Computer Science
来源机构中国农业大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/369933
作者单位[Wang, Pengxiang; Liu, Chang; Li, Yunkai] China Agr Univ, Coll Water Resources & Civil Engn, Beijing 100083, Peoples R China
推荐引用方式
GB/T 7714
Wang, Pengxiang,Liu, Chang,Li, Yunkai. Estimation method for ET0 with PSO-LSSVM based on the HHT in cold and arid data-sparse area[J]. 中国农业大学,2019,22:S8207-S8216.
APA Wang, Pengxiang,Liu, Chang,&Li, Yunkai.(2019).Estimation method for ET0 with PSO-LSSVM based on the HHT in cold and arid data-sparse area.CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS,22,S8207-S8216.
MLA Wang, Pengxiang,et al."Estimation method for ET0 with PSO-LSSVM based on the HHT in cold and arid data-sparse area".CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS 22(2019):S8207-S8216.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Pengxiang]的文章
[Liu, Chang]的文章
[Li, Yunkai]的文章
百度学术
百度学术中相似的文章
[Wang, Pengxiang]的文章
[Liu, Chang]的文章
[Li, Yunkai]的文章
必应学术
必应学术中相似的文章
[Wang, Pengxiang]的文章
[Liu, Chang]的文章
[Li, Yunkai]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。