Arid
DOI10.1002/rse2.116
Invasive buffelgrass detection using high-resolution satellite and UAV imagery on Google Earth Engine
Elkind, Kaitlyn; Sankey, Temuulen T.; Munson, Seth M.; Aslan, Clare E.
通讯作者Sankey, TT (corresponding author), No Arizona Univ, Sch Informat Comp & Cyber Syst, 1295 S Knoles Dr, Flagstaff, AZ 86011 USA.
来源期刊REMOTE SENSING IN ECOLOGY AND CONSERVATION
EISSN2056-3485
出版年2019
卷号5期号:4页码:318-331
英文摘要Methods to detect and monitor the spread of invasive grasses are critical to avoid ecosystem transformations and large economic costs. The rapid spread of non-native buffelgrass(Pennisetum ciliare) has intensified fire risk and is replacing fire intolerant native vegetation in the Sonoran Desert of the southwestern US. Coarse-resolution satellite imagery has had limited success in detecting small patches of buffelgrass, whereas ground-based and aerial survey methods are often cost prohibitive. To improve detection, we trained 2 m resolution DigitalGlobe WorldView-2 satellite imagery with 12 cm resolution unmanned aerial vehicle (UAV) imagery and classified buffelgrass on Google Earth Engine, a cloud computing platform, using Random Forest (RF) models in Saguaro National Park, Arizona, USA. Our classification models had an average overall accuracy of 93% and producer's accuracies of 94-96% for buffelgrass, although user's accuracies were low. We detected a 2.92 km(2) area of buffelgrass in the eastern Rincon Mountain District (1.07% of the total area) and a 0.46 km(2) area (0.46% of the total area) in the western Tucson Mountain District of Saguaro National Park. Buffelgrass cover was significantly greater in the Sonoran Paloverde-Mixed Cacti Desert Scrub vegetation type, on poorly developed Entisols and Inceptisol soils and on south-facing topographic aspects compared to other areas. Our results demonstrate that high-resolution imagery improve on previous attempts to detect and classify buffelgrass and indicate potential areas where the invasive grass might spread. The methods demonstrated in this study could be employed by land managers as a low-cost strategy to identify priority areas for control efforts and continued monitoring.
英文关键词Cloud computing drone non-native species random forest classification Sonoran Desert UAS WorldView-2
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000587566900003
WOS关键词UNMANNED AERIAL VEHICLES ; BIOLOGICAL INVASIONS ; GRASS ; VEGETATION ; FUTURE ; PLANTS
WOS类目Ecology ; Remote Sensing
WOS研究方向Environmental Sciences & Ecology ; Remote Sensing
来源机构United States Geological Survey
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/369499
作者单位[Elkind, Kaitlyn; Sankey, Temuulen T.] No Arizona Univ, Sch Informat Comp & Cyber Syst, 1295 S Knoles Dr, Flagstaff, AZ 86011 USA; [Munson, Seth M.] US Geol Survey, Southwest Biol Sci Ctr, Flagstaff, AZ 86001 USA; [Aslan, Clare E.] No Arizona Univ, Landscape Conservat Initiat, Flagstaff, AZ 86011 USA
推荐引用方式
GB/T 7714
Elkind, Kaitlyn,Sankey, Temuulen T.,Munson, Seth M.,et al. Invasive buffelgrass detection using high-resolution satellite and UAV imagery on Google Earth Engine[J]. United States Geological Survey,2019,5(4):318-331.
APA Elkind, Kaitlyn,Sankey, Temuulen T.,Munson, Seth M.,&Aslan, Clare E..(2019).Invasive buffelgrass detection using high-resolution satellite and UAV imagery on Google Earth Engine.REMOTE SENSING IN ECOLOGY AND CONSERVATION,5(4),318-331.
MLA Elkind, Kaitlyn,et al."Invasive buffelgrass detection using high-resolution satellite and UAV imagery on Google Earth Engine".REMOTE SENSING IN ECOLOGY AND CONSERVATION 5.4(2019):318-331.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Elkind, Kaitlyn]的文章
[Sankey, Temuulen T.]的文章
[Munson, Seth M.]的文章
百度学术
百度学术中相似的文章
[Elkind, Kaitlyn]的文章
[Sankey, Temuulen T.]的文章
[Munson, Seth M.]的文章
必应学术
必应学术中相似的文章
[Elkind, Kaitlyn]的文章
[Sankey, Temuulen T.]的文章
[Munson, Seth M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。