Arid
DOI10.1080/22797254.2019.1596756
Comparison of machine learning algorithms for soil salinity predictions in three dryland oases located in Xinjiang Uyghur Autonomous Region (XJUAR) of China
Wang, Fei; Yang, Shengtian; Yang, Wei; Yang, Xiaodong; Ding Jianli
通讯作者Yang, W (corresponding author), Xinjiang Univ, Xinjiang Common Univ, Coll Resource & Environm Sci, Key Lab Smart City & Environm Stimulat, Urumqi, Peoples R China.
来源期刊EUROPEAN JOURNAL OF REMOTE SENSING
EISSN2279-7254
出版年2019
卷号52期号:1页码:256-276
英文摘要Many different machine learning approaches have been applied for various purposes. However, there has been limited guidance regarding which, if any, machine learning models and covariate sets might be optimal for predicting soil salinity across different oases in the Xinjiang Uyghur Autonomous Region (XJUAR) of China. This study aimed to compare five machine learning algorithms, Least Absolute Shrinkage and Selection Operator (LASSO), Multiple Adaptive Regression Splines (MARS), Classification and Regression Trees (CART), Random Forest tree ensembles (RF), and Stochastic Gradient Treeboost (SGT), to predict soil salinity in three geographically distinct areas (the Qitai, Kuqa, and Yutian oases). A total of 21 data sets from three oases were used to evaluate the performance of the algorithm and to screen the optimal variables. The results show the following indices are considered to be important indicators for quantitative assessment of soil salinity: EEVI, CSRI, EVI2, GDVI, SAIO, and SIT. Comparison results show that SGT is the most suitable algorithm for predicting soil salinity in arid areas. This study provides a comprehensive comparison of machine learning techniques for soil salinity prediction and may assist in the modeling and variable selection of digital soil mapping in the XJUAR of China.
英文关键词Soil salinity machine learning oasis Landsat OLI digital elevation model Xinjiang Uyghur autonomous region
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000490746100001
WOS关键词STOCHASTIC GRADIENT TREEBOOST ; KERIYA RIVER-BASIN ; RANDOM FOREST ; VEGETATION ; MODELS ; INDEX ; CLASSIFICATION ; PERFORMANCE ; SALINIZATION ; SELECTION
WOS类目Remote Sensing
WOS研究方向Remote Sensing
来源机构新疆大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/369475
作者单位[Wang, Fei; Yang, Shengtian; Yang, Wei; Yang, Xiaodong; Ding Jianli] Xinjiang Univ, Xinjiang Common Univ, Coll Resource & Environm Sci, Key Lab Smart City & Environm Stimulat, Urumqi, Peoples R China; [Wang, Fei; Yang, Shengtian; Yang, Wei; Yang, Xiaodong; Ding Jianli] Minist Educ, Lab Oasis Ecosyst, Urumqi, Peoples R China
推荐引用方式
GB/T 7714
Wang, Fei,Yang, Shengtian,Yang, Wei,et al. Comparison of machine learning algorithms for soil salinity predictions in three dryland oases located in Xinjiang Uyghur Autonomous Region (XJUAR) of China[J]. 新疆大学,2019,52(1):256-276.
APA Wang, Fei,Yang, Shengtian,Yang, Wei,Yang, Xiaodong,&Ding Jianli.(2019).Comparison of machine learning algorithms for soil salinity predictions in three dryland oases located in Xinjiang Uyghur Autonomous Region (XJUAR) of China.EUROPEAN JOURNAL OF REMOTE SENSING,52(1),256-276.
MLA Wang, Fei,et al."Comparison of machine learning algorithms for soil salinity predictions in three dryland oases located in Xinjiang Uyghur Autonomous Region (XJUAR) of China".EUROPEAN JOURNAL OF REMOTE SENSING 52.1(2019):256-276.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Fei]的文章
[Yang, Shengtian]的文章
[Yang, Wei]的文章
百度学术
百度学术中相似的文章
[Wang, Fei]的文章
[Yang, Shengtian]的文章
[Yang, Wei]的文章
必应学术
必应学术中相似的文章
[Wang, Fei]的文章
[Yang, Shengtian]的文章
[Yang, Wei]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。