Arid
DOI10.3390/rs13050882
Uncertainty and Sensitivity Analysis of a Remote-Sensing-Based Penman-Monteith Model to Meteorological and Land Surface Input Variables
Majozi, Nobuhle P.; Mannaerts, Chris M.; Ramoelo, Abel; Mathieu, Renaud; Verhoef, Wouter
通讯作者Majozi, NP (corresponding author), CSIR, Adv Agr & Food, Precis Agr Grp, ZA-0001 Pretoria, South Africa. ; Majozi, NP (corresponding author), Univ Twente, Fac Geoinformat Sci & Earth Observat, Dept Water Resources, NL-7500 AE Enschede, Netherlands.
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2021
卷号13期号:5
英文摘要This study analysed the uncertainty and sensitivity of core and intermediate input variables of a remote-sensing-data-based Penman-Monteith (PM-Mu) evapotranspiration (ET) model. We derived absolute and relative uncertainties of core measured meteorological and remote-sensing-based atmospheric and land surface input variables and parameters of the PM-Mu model. Uncertainties of important intermediate data components (i.e., net radiation and aerodynamic and surface resistances) were also assessed. To estimate the instrument measurement uncertainties of the in situ meteorological input variables, we used the reported accuracies of the manufacturers. Observational accuracies of the remote sensing input variables (land surface temperature (LST), land surface emissivity (epsilon(s)), leaf area index (LAI), land surface albedo (alpha)) were derived from peer-reviewed satellite sensor validation reports to compute their uncertainties. The input uncertainties were propagated to the final model's evapotranspiration estimation uncertainty. Our analysis indicated relatively high uncertainties associated with relative humidity (RH), and hence all the intermediate variables associated with RH, like vapour pressure deficit (VPD) and the surface and aerodynamic resistances. This is in contrast to other studies, which reported LAI uncertainty as the most influential. The semi-arid conditions and seasonality of the regional South African climate and high temporal frequency of the variations in VPD, air and land surface temperatures could explain the uncertainties observed in this study. The results also showed the ET algorithm to be most sensitive to the air-land surface temperature difference. An accurate assessment of those in situ and remotely sensed variables is required to achieve reliable evapotranspiration model estimates in these generally dry regions and climates. A significant advantage of the remote-sensing-based ET method remains its full area coverage in contrast to classic-point (station)-based ET estimates.
英文关键词sensitivity analysis uncertainty analysis remote sensing Penman– Monteith evapotranspiration absolute uncertainty relative uncertainty
类型Article
语种英语
开放获取类型gold, Green Published
收录类别SCI-E
WOS记录号WOS:000628499200001
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/368989
作者单位[Majozi, Nobuhle P.] CSIR, Adv Agr & Food, Precis Agr Grp, ZA-0001 Pretoria, South Africa; [Majozi, Nobuhle P.; Mannaerts, Chris M.; Verhoef, Wouter] Univ Twente, Fac Geoinformat Sci & Earth Observat, Dept Water Resources, NL-7500 AE Enschede, Netherlands; [Ramoelo, Abel] South African Natl Pk, Sci Serv, ZA-0001 Pretoria, South Africa; [Ramoelo, Abel; Mathieu, Renaud] Univ Pretoria, Dept Geog Geoinformat & Meteorol, ZA-0001 Pretoria, South Africa; [Mathieu, Renaud] Int Rice Res Inst, Geospatial Sci & Modelling Cluster, Pili Dr, Los Banos 4031, Laguna, Philippines
推荐引用方式
GB/T 7714
Majozi, Nobuhle P.,Mannaerts, Chris M.,Ramoelo, Abel,et al. Uncertainty and Sensitivity Analysis of a Remote-Sensing-Based Penman-Monteith Model to Meteorological and Land Surface Input Variables[J],2021,13(5).
APA Majozi, Nobuhle P.,Mannaerts, Chris M.,Ramoelo, Abel,Mathieu, Renaud,&Verhoef, Wouter.(2021).Uncertainty and Sensitivity Analysis of a Remote-Sensing-Based Penman-Monteith Model to Meteorological and Land Surface Input Variables.REMOTE SENSING,13(5).
MLA Majozi, Nobuhle P.,et al."Uncertainty and Sensitivity Analysis of a Remote-Sensing-Based Penman-Monteith Model to Meteorological and Land Surface Input Variables".REMOTE SENSING 13.5(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Majozi, Nobuhle P.]的文章
[Mannaerts, Chris M.]的文章
[Ramoelo, Abel]的文章
百度学术
百度学术中相似的文章
[Majozi, Nobuhle P.]的文章
[Mannaerts, Chris M.]的文章
[Ramoelo, Abel]的文章
必应学术
必应学术中相似的文章
[Majozi, Nobuhle P.]的文章
[Mannaerts, Chris M.]的文章
[Ramoelo, Abel]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。