Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3389/fpls.2021.736614 |
Variability in Physiological Traits Reveals Boron Toxicity Tolerance in Aegilops Species | |
Khan, Mohd Kamran; Pandey, Anamika; Hamurcu, Mehmet; Avsaroglu, Zuhal Zeynep; Ozbek, Merve; Omay, Ayse Humeyra; Elbasan, Fevzi; Omay, Makbule Rumeysa; Gokmen, Fatma; Topal, Ali; Gezgin, Sait | |
通讯作者 | Pandey, A (corresponding author), Selcuk Univ, Fac Agr, Dept Soil Sci & Plant Nutr, Konya, Turkey. |
来源期刊 | FRONTIERS IN PLANT SCIENCE
![]() |
ISSN | 1664-462X |
出版年 | 2021 |
卷号 | 12 |
英文摘要 | Boron (B) is an important micronutrient required for the normal growth and development of plants. However, its excess in the soil causes severe damage to plant tissues, which affects the final yield. Wheat, one of the main staple crops, has been reported to be largely affected by B toxicity stress in arid and semi-arid regions of the world. The prevalence of B toxicity stress can be addressed by utilizing wild wheat genotypes with a variant level of stress tolerance. Wild wheat relatives have been identified as a prominent source of several abiotic stress-tolerant genes. However, Aegilops species in the tertiary gene pool of wheat have not been well exploited as a source of B toxicity tolerance. This study explores the root and shoot growth, proline induction, and extent of lipid peroxidation in 19 Aegilops accessions comprising 6 different species and the B-tolerant check wheat cultivar Bolal 2973 grown under Control (3.1 mu M B), toxic (1 mM B), and highly toxic (10 mM B) B stress treatment. B toxicity stress had a more decisive impact on growth parameters as compared to the malondialdehyde (MDA) and proline content. The obtained results suggested that even the genotypes with high shoot B (SB) accumulation can be tolerant to B toxicity stress, and the mechanism of B redistribution in leaves should be studied in detail. It has been proposed that the studied Aegilops accessions can be potentially used for genetically improving the B toxicity-tolerance trait due to a high level of variation in the response toward high B toxicity. Though a number of accessions showed suppression in the root and shoot growth, very few accessions with stress adaptive plasticity to B toxicity stress leading to an improvement of shoot growth parameters could be determined. The two accessions, Aegilops biuncialis accession TGB and Aegilops columnaris accession TGB , were identified as the potential genotypes with B toxicity stress tolerance and can be utilized for developing a pre-breeding material in B tolerance-based breeding programs. |
英文关键词 | Aegilops alien introgression boron toxicity genetic resources genetic variation stress tolerance wheat wild species |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000718018100001 |
WOS关键词 | HIGH SOIL BORON ; ANTIOXIDANT RESPONSES ; WHEAT CULTIVARS ; DURUM-WHEAT ; PROLINE ACCUMULATION ; MOLECULAR-CLONING ; BARLEY CULTIVARS ; OXIDATIVE STRESS ; BREAD WHEAT ; PLANTS |
WOS类目 | Plant Sciences |
WOS研究方向 | Plant Sciences |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/368261 |
作者单位 | [Khan, Mohd Kamran; Pandey, Anamika; Hamurcu, Mehmet; Avsaroglu, Zuhal Zeynep; Ozbek, Merve; Omay, Ayse Humeyra; Elbasan, Fevzi; Omay, Makbule Rumeysa; Gokmen, Fatma; Gezgin, Sait] Selcuk Univ, Fac Agr, Dept Soil Sci & Plant Nutr, Konya, Turkey; [Topal, Ali] Selcuk Univ, Fac Agr, Dept Field Crops, Konya, Turkey |
推荐引用方式 GB/T 7714 | Khan, Mohd Kamran,Pandey, Anamika,Hamurcu, Mehmet,et al. Variability in Physiological Traits Reveals Boron Toxicity Tolerance in Aegilops Species[J],2021,12. |
APA | Khan, Mohd Kamran.,Pandey, Anamika.,Hamurcu, Mehmet.,Avsaroglu, Zuhal Zeynep.,Ozbek, Merve.,...&Gezgin, Sait.(2021).Variability in Physiological Traits Reveals Boron Toxicity Tolerance in Aegilops Species.FRONTIERS IN PLANT SCIENCE,12. |
MLA | Khan, Mohd Kamran,et al."Variability in Physiological Traits Reveals Boron Toxicity Tolerance in Aegilops Species".FRONTIERS IN PLANT SCIENCE 12(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。