Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1021/acsami.1c14696 |
Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel | |
Wang, Qianqian; He, Yi; Geng, Xinxin; Hou, Yongping; Zheng, Yongmei | |
通讯作者 | Hou, YP ; Zheng, YM (corresponding author), Beihang Univ BUAA, Key Lab Bioinspired Smart Interfacial Sci & Techn, Minist Educ, Sch Chem, Beijing 100191, Peoples R China. ; Hou, YP ; Zheng, YM (corresponding author), Beihang Univ BUAA, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China. |
来源期刊 | ACS APPLIED MATERIALS & INTERFACES
![]() |
ISSN | 1944-8244 |
EISSN | 1944-8252 |
出版年 | 2021 |
卷号 | 13期号:40页码:48292-48300 |
英文摘要 | A novel integrated bioinspired surface is fabricated by using an innovative capillarity-induced selective oxidation method, to achieve the combination of the fog-collecting characteristics of a variety of creatures, i.e., the micronanostructures of spider silk, the wettable patterns of desert beetle, the conical structure of cactus spine, and the hierarchical microchannel of Sarracenia trichome. The fog is captured effectively via multistructures on the cone tips, and captured droplet is collected and confined in the microchannel to realize rapid transport via the formation of wettable pattern on the surface and the introduction of wettable gradient in the microchannel. Consequently, the fog harvest efficiency reaches 2.48 g/h, increasing to nearly 320% compared to the normal surface. More interestingly, similar to Sarracenia trichome, the surface also presents two transport modes, namely, Mode I (water transport along dry microchannel) and Mode II (succeeding water slippage on the water film). In Mode II, the velocity of 34.10 mm/s is about three times faster than that on the Sarracenia trichome. Such a design of integrated bioinspired surface may present potential applications in high-efficiency water collection systems, microfluidic devices, and others. |
英文关键词 | fog harvesting droplet transport bioinspired surface capillary microchannel |
类型 | Article |
语种 | 英语 |
收录类别 | SCI-E |
WOS记录号 | WOS:000709458200093 |
WOS关键词 | WATER ; BEETLE ; FLOW |
WOS类目 | Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary |
WOS研究方向 | Science & Technology - Other Topics ; Materials Science |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/368104 |
作者单位 | [Wang, Qianqian; He, Yi; Geng, Xinxin; Hou, Yongping; Zheng, Yongmei] Beihang Univ BUAA, Key Lab Bioinspired Smart Interfacial Sci & Techn, Minist Educ, Sch Chem, Beijing 100191, Peoples R China; [Wang, Qianqian; He, Yi; Geng, Xinxin; Hou, Yongping; Zheng, Yongmei] Beihang Univ BUAA, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Qianqian,He, Yi,Geng, Xinxin,et al. Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel[J],2021,13(40):48292-48300. |
APA | Wang, Qianqian,He, Yi,Geng, Xinxin,Hou, Yongping,&Zheng, Yongmei.(2021).Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel.ACS APPLIED MATERIALS & INTERFACES,13(40),48292-48300. |
MLA | Wang, Qianqian,et al."Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel".ACS APPLIED MATERIALS & INTERFACES 13.40(2021):48292-48300. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。