Arid
DOI10.1021/acsami.1c14696
Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel
Wang, Qianqian; He, Yi; Geng, Xinxin; Hou, Yongping; Zheng, Yongmei
通讯作者Hou, YP ; Zheng, YM (corresponding author), Beihang Univ BUAA, Key Lab Bioinspired Smart Interfacial Sci & Techn, Minist Educ, Sch Chem, Beijing 100191, Peoples R China. ; Hou, YP ; Zheng, YM (corresponding author), Beihang Univ BUAA, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China.
来源期刊ACS APPLIED MATERIALS & INTERFACES
ISSN1944-8244
EISSN1944-8252
出版年2021
卷号13期号:40页码:48292-48300
英文摘要A novel integrated bioinspired surface is fabricated by using an innovative capillarity-induced selective oxidation method, to achieve the combination of the fog-collecting characteristics of a variety of creatures, i.e., the micronanostructures of spider silk, the wettable patterns of desert beetle, the conical structure of cactus spine, and the hierarchical microchannel of Sarracenia trichome. The fog is captured effectively via multistructures on the cone tips, and captured droplet is collected and confined in the microchannel to realize rapid transport via the formation of wettable pattern on the surface and the introduction of wettable gradient in the microchannel. Consequently, the fog harvest efficiency reaches 2.48 g/h, increasing to nearly 320% compared to the normal surface. More interestingly, similar to Sarracenia trichome, the surface also presents two transport modes, namely, Mode I (water transport along dry microchannel) and Mode II (succeeding water slippage on the water film). In Mode II, the velocity of 34.10 mm/s is about three times faster than that on the Sarracenia trichome. Such a design of integrated bioinspired surface may present potential applications in high-efficiency water collection systems, microfluidic devices, and others.
英文关键词fog harvesting droplet transport bioinspired surface capillary microchannel
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000709458200093
WOS关键词WATER ; BEETLE ; FLOW
WOS类目Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS研究方向Science & Technology - Other Topics ; Materials Science
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/368104
作者单位[Wang, Qianqian; He, Yi; Geng, Xinxin; Hou, Yongping; Zheng, Yongmei] Beihang Univ BUAA, Key Lab Bioinspired Smart Interfacial Sci & Techn, Minist Educ, Sch Chem, Beijing 100191, Peoples R China; [Wang, Qianqian; He, Yi; Geng, Xinxin; Hou, Yongping; Zheng, Yongmei] Beihang Univ BUAA, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
推荐引用方式
GB/T 7714
Wang, Qianqian,He, Yi,Geng, Xinxin,et al. Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel[J],2021,13(40):48292-48300.
APA Wang, Qianqian,He, Yi,Geng, Xinxin,Hou, Yongping,&Zheng, Yongmei.(2021).Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel.ACS APPLIED MATERIALS & INTERFACES,13(40),48292-48300.
MLA Wang, Qianqian,et al."Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel".ACS APPLIED MATERIALS & INTERFACES 13.40(2021):48292-48300.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Qianqian]的文章
[He, Yi]的文章
[Geng, Xinxin]的文章
百度学术
百度学术中相似的文章
[Wang, Qianqian]的文章
[He, Yi]的文章
[Geng, Xinxin]的文章
必应学术
必应学术中相似的文章
[Wang, Qianqian]的文章
[He, Yi]的文章
[Geng, Xinxin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。