Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1080/19475705.2021.1994024 |
Assessing gully erosion susceptibility using topographic derived attributes, multi-criteria decision-making, and machine learning classifiers | |
Al-Bawi, Ahmed J.; Al-Abadi, Alaa M.; Pradhan, Biswajeet; Alamri, Abdullah M. | |
通讯作者 | Al-Abadi, AM (corresponding author), Univ Basrah, Coll Sci, Dept Geol, Basrah, Iraq. ; Pradhan, B (corresponding author), Univ Technol Sydney, Fac Engn & IT, Ctr Adv Modelling & Geospatial Informat Syst, Sydney, NSW, Australia. ; Pradhan, B (corresponding author), Sejong Univ, Dept Energy & Mineral Resources Engn, Seoul, South Korea. ; Pradhan, B (corresponding author), Univ Kebangsaan Malaysia, Earth Observat Ctr, Inst Climate Change, Bangi, Selangor, Malaysia. |
来源期刊 | GEOMATICS NATURAL HAZARDS & RISK
![]() |
ISSN | 1947-5705 |
EISSN | 1947-5713 |
出版年 | 2021 |
卷号 | 12期号:1页码:3035-3062 |
英文摘要 | Gully erosion is an erosive process that contributes considerably to the shape of the earth's surface and is a major contributor to land degradation and soil loss. This study applied a methodology for mapping gully erosion susceptibility using only topographic related attributes derived from a medium-resolution digital elevation model (DEM) and a hybrid analytical hierarchy process (AHP) and the technique for an order of preference by similarity to ideal solutions (TOPSIS) and compare the results with naive Bayes (NB) and support vector machine learning (SVM) algorithms. A transboundary sub-basin in an arid area of southern Iraq was selected as a case study. The performance of the developed models was compared using the receiver operating characteristic curve (ROC). Results showed that the areas under the ROC were 0.933, 0.936, and 0.955 for AHP-TOPSIS, NB, and SVM with radial basis function, respectively, which indicated that the performance of simply derived AHP-TOPSIS model is similar to sophisticated NB and SVM models. Findings indicated that a medium resolution DEM and AHP-TOPSIS are a promising tool for mapping of gully erosion susceptibility. |
英文关键词 | Gully erosion gullies GIS remote sensing MCDM TOPSIS Iraq |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000710699400001 |
WOS关键词 | HAZARD ASSESSMENT ; RANDOM FOREST ; MODELS ; REGION |
WOS类目 | Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences ; Water Resources |
WOS研究方向 | Geology ; Meteorology & Atmospheric Sciences ; Water Resources |
来源机构 | King Saud University |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/368062 |
作者单位 | [Al-Bawi, Ahmed J.; Al-Abadi, Alaa M.] Univ Basrah, Coll Sci, Dept Geol, Basrah, Iraq; [Pradhan, Biswajeet] Univ Technol Sydney, Fac Engn & IT, Ctr Adv Modelling & Geospatial Informat Syst, Sydney, NSW, Australia; [Pradhan, Biswajeet] Sejong Univ, Dept Energy & Mineral Resources Engn, Seoul, South Korea; [Pradhan, Biswajeet] Univ Kebangsaan Malaysia, Earth Observat Ctr, Inst Climate Change, Bangi, Selangor, Malaysia; [Alamri, Abdullah M.] King Saud Univ, Coll Sci, Dept Geol & Geophys, Riyadh, Saudi Arabia |
推荐引用方式 GB/T 7714 | Al-Bawi, Ahmed J.,Al-Abadi, Alaa M.,Pradhan, Biswajeet,et al. Assessing gully erosion susceptibility using topographic derived attributes, multi-criteria decision-making, and machine learning classifiers[J]. King Saud University,2021,12(1):3035-3062. |
APA | Al-Bawi, Ahmed J.,Al-Abadi, Alaa M.,Pradhan, Biswajeet,&Alamri, Abdullah M..(2021).Assessing gully erosion susceptibility using topographic derived attributes, multi-criteria decision-making, and machine learning classifiers.GEOMATICS NATURAL HAZARDS & RISK,12(1),3035-3062. |
MLA | Al-Bawi, Ahmed J.,et al."Assessing gully erosion susceptibility using topographic derived attributes, multi-criteria decision-making, and machine learning classifiers".GEOMATICS NATURAL HAZARDS & RISK 12.1(2021):3035-3062. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。