Arid
DOI10.1080/19475705.2021.1994024
Assessing gully erosion susceptibility using topographic derived attributes, multi-criteria decision-making, and machine learning classifiers
Al-Bawi, Ahmed J.; Al-Abadi, Alaa M.; Pradhan, Biswajeet; Alamri, Abdullah M.
通讯作者Al-Abadi, AM (corresponding author), Univ Basrah, Coll Sci, Dept Geol, Basrah, Iraq. ; Pradhan, B (corresponding author), Univ Technol Sydney, Fac Engn & IT, Ctr Adv Modelling & Geospatial Informat Syst, Sydney, NSW, Australia. ; Pradhan, B (corresponding author), Sejong Univ, Dept Energy & Mineral Resources Engn, Seoul, South Korea. ; Pradhan, B (corresponding author), Univ Kebangsaan Malaysia, Earth Observat Ctr, Inst Climate Change, Bangi, Selangor, Malaysia.
来源期刊GEOMATICS NATURAL HAZARDS & RISK
ISSN1947-5705
EISSN1947-5713
出版年2021
卷号12期号:1页码:3035-3062
英文摘要Gully erosion is an erosive process that contributes considerably to the shape of the earth's surface and is a major contributor to land degradation and soil loss. This study applied a methodology for mapping gully erosion susceptibility using only topographic related attributes derived from a medium-resolution digital elevation model (DEM) and a hybrid analytical hierarchy process (AHP) and the technique for an order of preference by similarity to ideal solutions (TOPSIS) and compare the results with naive Bayes (NB) and support vector machine learning (SVM) algorithms. A transboundary sub-basin in an arid area of southern Iraq was selected as a case study. The performance of the developed models was compared using the receiver operating characteristic curve (ROC). Results showed that the areas under the ROC were 0.933, 0.936, and 0.955 for AHP-TOPSIS, NB, and SVM with radial basis function, respectively, which indicated that the performance of simply derived AHP-TOPSIS model is similar to sophisticated NB and SVM models. Findings indicated that a medium resolution DEM and AHP-TOPSIS are a promising tool for mapping of gully erosion susceptibility.
英文关键词Gully erosion gullies GIS remote sensing MCDM TOPSIS Iraq
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000710699400001
WOS关键词HAZARD ASSESSMENT ; RANDOM FOREST ; MODELS ; REGION
WOS类目Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences ; Water Resources
WOS研究方向Geology ; Meteorology & Atmospheric Sciences ; Water Resources
来源机构King Saud University
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/368062
作者单位[Al-Bawi, Ahmed J.; Al-Abadi, Alaa M.] Univ Basrah, Coll Sci, Dept Geol, Basrah, Iraq; [Pradhan, Biswajeet] Univ Technol Sydney, Fac Engn & IT, Ctr Adv Modelling & Geospatial Informat Syst, Sydney, NSW, Australia; [Pradhan, Biswajeet] Sejong Univ, Dept Energy & Mineral Resources Engn, Seoul, South Korea; [Pradhan, Biswajeet] Univ Kebangsaan Malaysia, Earth Observat Ctr, Inst Climate Change, Bangi, Selangor, Malaysia; [Alamri, Abdullah M.] King Saud Univ, Coll Sci, Dept Geol & Geophys, Riyadh, Saudi Arabia
推荐引用方式
GB/T 7714
Al-Bawi, Ahmed J.,Al-Abadi, Alaa M.,Pradhan, Biswajeet,et al. Assessing gully erosion susceptibility using topographic derived attributes, multi-criteria decision-making, and machine learning classifiers[J]. King Saud University,2021,12(1):3035-3062.
APA Al-Bawi, Ahmed J.,Al-Abadi, Alaa M.,Pradhan, Biswajeet,&Alamri, Abdullah M..(2021).Assessing gully erosion susceptibility using topographic derived attributes, multi-criteria decision-making, and machine learning classifiers.GEOMATICS NATURAL HAZARDS & RISK,12(1),3035-3062.
MLA Al-Bawi, Ahmed J.,et al."Assessing gully erosion susceptibility using topographic derived attributes, multi-criteria decision-making, and machine learning classifiers".GEOMATICS NATURAL HAZARDS & RISK 12.1(2021):3035-3062.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Al-Bawi, Ahmed J.]的文章
[Al-Abadi, Alaa M.]的文章
[Pradhan, Biswajeet]的文章
百度学术
百度学术中相似的文章
[Al-Bawi, Ahmed J.]的文章
[Al-Abadi, Alaa M.]的文章
[Pradhan, Biswajeet]的文章
必应学术
必应学术中相似的文章
[Al-Bawi, Ahmed J.]的文章
[Al-Abadi, Alaa M.]的文章
[Pradhan, Biswajeet]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。