Arid
DOI10.1515/geo-2020-0286
A PLSR model to predict soil salinity using Sentinel-2 MSI data
Sahbeni, Ghada
通讯作者Sahbeni, G (corresponding author), Eotvos Lorand Univ, Dept Geophys & Space Sci, Pazmany Peter Stny 1-A, H-1117 Budapest, Hungary.
来源期刊OPEN GEOSCIENCES
ISSN2391-5447
出版年2021
卷号13期号:1页码:977-987
英文摘要Salinization is one of the most widespread environmental threats in arid and semi-arid regions that occur either naturally or artificially within the soil. When exceeding the thresholds, salinity becomes a severe danger, damaging agricultural production, water and soil quality, biodiversity, and infrastructures. This study used spectral indices, including salinity and vegetation indices, Sentinel-2 MSI original bands, and DEM, to model soil salinity in the Great Hungarian Plain. Eighty-one soil samples in the upper 30 cm of the soil surface were collected from vegetated and nonvegetated areas by the Research Institute for Soil Sciences and Agricultural Chemistry (RISSAC). The sampling campaign of salinity monitoring was performed in the dry season to enhance salt spectral characteristics during its accumulation in the subsoil. Hence, applying a partial least squares regression (PLSR) between salt content (g/kg) and remotely sensed data manifested a highly moderate correlation with a coefficient of determination R-2 of 0.68, a p-value of 0.000017, and a root mean square error of 0.22. The final model can be deployed to highlight soil salinity levels in the study area and assist in understanding the efficacy of land management strategies.
英文关键词soil salinity Sentinel-2 MSI PLSR regression analysis multispectral remote sensing statistical modeling the Great Hungarian Plain
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000709472600001
WOS关键词SPECTRAL INDEXES ; SALINIZATION ; REGRESSION ; LAND ; BIOMASS ; REGION ; IMAGES
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/367992
作者单位[Sahbeni, Ghada] Eotvos Lorand Univ, Dept Geophys & Space Sci, Pazmany Peter Stny 1-A, H-1117 Budapest, Hungary
推荐引用方式
GB/T 7714
Sahbeni, Ghada. A PLSR model to predict soil salinity using Sentinel-2 MSI data[J],2021,13(1):977-987.
APA Sahbeni, Ghada.(2021).A PLSR model to predict soil salinity using Sentinel-2 MSI data.OPEN GEOSCIENCES,13(1),977-987.
MLA Sahbeni, Ghada."A PLSR model to predict soil salinity using Sentinel-2 MSI data".OPEN GEOSCIENCES 13.1(2021):977-987.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sahbeni, Ghada]的文章
百度学术
百度学术中相似的文章
[Sahbeni, Ghada]的文章
必应学术
必应学术中相似的文章
[Sahbeni, Ghada]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。