Arid
DOI10.1016/j.jprocont.2021.10.006
OASIS-P: Operable Adaptive Sparse Identification of Systems for fault Prognosis of chemical processes
Bhadriraju, Bhavana; Kwon, Joseph Sang-Il; Khan, Faisal
通讯作者Kwon, JSI (corresponding author), Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77845 USA.
来源期刊JOURNAL OF PROCESS CONTROL
ISSN0959-1524
EISSN1873-2771
出版年2021
卷号107页码:114-126
英文摘要With the increasing process complexities, data-driven fault prognosis has emerged as a promising fault management tool that predicts and manages abnormal events well in advance. In this paper, we develop a fault prognosis framework named 'OASIS-P' by integrating operable adaptive sparse identification of systems (OASIS), which is a data-driven adaptive modeling technique, with a risk based process monitoring approach and contribution plots. Firstly, OASIS is employed with the risk assessment procedure for the prediction of impending faults. As the OASIS model is adaptive, it copes with the initial fault symptoms and forecasts the future behavior of the process under faulty conditions reasonably well, thereby providing an early fault prediction. Next, the fault isolation step is immediately initiated using contribution plots to identify the faulty variables. Unlike in fault diagnosis, the problem of ambiguity in interpreting contribution results due to fault propagation is not an issue in fault prognosis, if the fault isolation step is implemented at an early stage of the fault before it affects the other variables. Hence, the contribution plots together with OASIS can proactively monitor the process in real-time. As a case study, we demonstrate OASIS-P for fault prognosis of a reactor-separator system. (C) 2021 Elsevier Ltd. All rights reserved.
英文关键词Nonlinear systems Sparse model Neural networks Risk assessment Contribution plots Fault prediction Fault isolation
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000715747400006
WOS关键词DYNAMIC RISK-ASSESSMENT ; REGRESSION ; DECOMPOSITION ; MODELS ; FILTER
WOS类目Automation & Control Systems ; Engineering, Chemical
WOS研究方向Automation & Control Systems ; Engineering
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/367815
作者单位[Bhadriraju, Bhavana; Kwon, Joseph Sang-Il; Khan, Faisal] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77845 USA; [Bhadriraju, Bhavana; Kwon, Joseph Sang-Il] Texas A&M Univ, Texas A&M Energy Inst, College Stn, TX 77845 USA; [Bhadriraju, Bhavana; Khan, Faisal] Texas A&M Univ, Mary Kay OConnor Proc Safety Ctr, College Stn, TX 77845 USA
推荐引用方式
GB/T 7714
Bhadriraju, Bhavana,Kwon, Joseph Sang-Il,Khan, Faisal. OASIS-P: Operable Adaptive Sparse Identification of Systems for fault Prognosis of chemical processes[J],2021,107:114-126.
APA Bhadriraju, Bhavana,Kwon, Joseph Sang-Il,&Khan, Faisal.(2021).OASIS-P: Operable Adaptive Sparse Identification of Systems for fault Prognosis of chemical processes.JOURNAL OF PROCESS CONTROL,107,114-126.
MLA Bhadriraju, Bhavana,et al."OASIS-P: Operable Adaptive Sparse Identification of Systems for fault Prognosis of chemical processes".JOURNAL OF PROCESS CONTROL 107(2021):114-126.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bhadriraju, Bhavana]的文章
[Kwon, Joseph Sang-Il]的文章
[Khan, Faisal]的文章
百度学术
百度学术中相似的文章
[Bhadriraju, Bhavana]的文章
[Kwon, Joseph Sang-Il]的文章
[Khan, Faisal]的文章
必应学术
必应学术中相似的文章
[Bhadriraju, Bhavana]的文章
[Kwon, Joseph Sang-Il]的文章
[Khan, Faisal]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。