Arid
DOI10.1111/1752-1688.12965
Sensitivity of Remotely Sensed Vegetation to Hydrologic Predictors across the Colorado River Basin, 2001-2019
Saby, Linnea; McKee, Kevin L.; Kansara, Prakrut; Goodall, Jonathan L.; Band, Lawrence E.; Lakshmi, Venkataraman
通讯作者Saby, L (corresponding author), Univ Virginia Charlottesville, Dept Engn Syst & Environm, Charlottesville, VA 22903 USA.
来源期刊JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION
ISSN1093-474X
EISSN1752-1688
出版年2021-10
英文摘要In water-limited regions, it is important to understand the response of vegetation to hydrologic predictors for fire management and water resource planning. We present a novel spatially distributed analysis of ecohydrological interactions in the semi-arid Colorado River Basin (CRB) over 18 years, 2001-2019. The hydrologic predictors used include precipitation from the Integrated Multi-satellitE Retrievals for GPM, 0- to 10-cm-depth surface soil moisture (SSM) estimations from the National Land Data Assimilation System, and newly available 0- to 40-cm depth Soil MERGE root zone soil moisture (RZSM) estimations. These are evaluated using time-lagged correlations with the Enhanced Vegetation Index (EVI) from MODerate Resolution Imaging Spectroradiometer (MODIS). We demonstrate that EVI response is strongest and most immediate to the hydrologic predictors in the hot and dry southwestern CRB, with lag times of 0-32 days. RZSM was expected to provide the best predictor of EVI, but we found SSM to be a superior predictor of EVI with interquartile range correlations of 0.20-0.37 across the CRB. RZSM had slightly lower interquartile range correlations of 0.15-0.35, and precipitation was the least effective predictor of EVI with interquartile range correlations of 0.11-0.26. Plotting these cross-correlations provides a spatially explicit overview of temporal dependence between SSM, RZSM, precipitation, and EVI with publicly available datasets.
英文关键词vegetation response remote sensing ecohydrology soil moisture
类型Article ; Early Access
语种英语
收录类别SCI-E
WOS记录号WOS:000712949200001
WOS关键词VERTICAL MEASUREMENT DEPTH ; ZONE SOIL-MOISTURE ; INFORMATION-CONTENT ; ROOTING DEPTH ; NDVI ; CLIMATE ; PRODUCTIVITY ; RESPONSES ; RAINFALL ; IMPACT
WOS类目Engineering, Environmental ; Geosciences, Multidisciplinary ; Water Resources
WOS研究方向Engineering ; Geology ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/367584
作者单位[Saby, Linnea; Kansara, Prakrut; Goodall, Jonathan L.; Band, Lawrence E.; Lakshmi, Venkataraman] Univ Virginia Charlottesville, Dept Engn Syst & Environm, Charlottesville, VA 22903 USA; [McKee, Kevin L.] Virginia Polytech Inst & State Univ Blacksburg, Dept Stat, Blacksburg, VA USA; [Band, Lawrence E.] Univ Virginia Charlottesville, Dept Environm Sci, Charlottesville, VA USA
推荐引用方式
GB/T 7714
Saby, Linnea,McKee, Kevin L.,Kansara, Prakrut,et al. Sensitivity of Remotely Sensed Vegetation to Hydrologic Predictors across the Colorado River Basin, 2001-2019[J],2021.
APA Saby, Linnea,McKee, Kevin L.,Kansara, Prakrut,Goodall, Jonathan L.,Band, Lawrence E.,&Lakshmi, Venkataraman.(2021).Sensitivity of Remotely Sensed Vegetation to Hydrologic Predictors across the Colorado River Basin, 2001-2019.JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION.
MLA Saby, Linnea,et al."Sensitivity of Remotely Sensed Vegetation to Hydrologic Predictors across the Colorado River Basin, 2001-2019".JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Saby, Linnea]的文章
[McKee, Kevin L.]的文章
[Kansara, Prakrut]的文章
百度学术
百度学术中相似的文章
[Saby, Linnea]的文章
[McKee, Kevin L.]的文章
[Kansara, Prakrut]的文章
必应学术
必应学术中相似的文章
[Saby, Linnea]的文章
[McKee, Kevin L.]的文章
[Kansara, Prakrut]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。