Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1007/s10668-021-01596-6 |
Vegetation type and land cover mapping in a semi-arid heterogeneous forested wetland of India: comparing image classification algorithms | |
Deval, Kundan; Joshi, P. K. | |
通讯作者 | Joshi, PK (corresponding author), Jawaharlal Nehru Univ, Sch Environm Sci, New Delhi 110067, India. ; Joshi, PK (corresponding author), Jawaharlal Nehru Univ, Special Ctr Disaster Res, New Delhi 110067, India. |
来源期刊 | ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY
![]() |
ISSN | 1387-585X |
EISSN | 1573-2975 |
出版年 | 2021-06 |
英文摘要 | The present study evaluates and compares performance of three supervised classification algorithms namely Maximum Likelihood (MXL), Artificial Neural Network (ANN) and Support Vector Machine (SVM), using very high resolution WorldView-2 satellite imagery for vegetation type/land cover (VT/LC) mapping in Keoladeo National Park (KNP), India. We mapped 16 (8 gregarious VT and 8 LC) classes, and used Bootstrap (with 100 iterations) method for accuracy assessment. All three algorithms produced high overall accuracy (OA) (67-85%) and kappa (K) (65-83) values. Visual comparison of the predictions revealed that SVM (OA = 85.12% (K = 83.9) with 3.85% width of confidence interval) performed the best followed by ANN (69.72% (67.32) with 4.43%) and MXL (67.37% (65.22) with 4.33%). This research provides insight for selection of classification algorithm for detailed VT/LC mapping of wetland associated systems using very high resolution satellite data. The findings of this research are useful for environmental management, restoration and conservation planning of KNP, India. The database will be of high value for future development and sustainability issues in the park. |
英文关键词 | Vegetation type Land cover Semi-arid wetland Maximum Likelihood (MXL) Artificial Neural Network (ANN) Support Vector Machine (SVM) WorldView2 |
类型 | Article ; Early Access |
语种 | 英语 |
收录类别 | SCI-E |
WOS记录号 | WOS:000664808200003 |
WOS关键词 | SUPPORT VECTOR MACHINES ; ARTIFICIAL NEURAL-NETWORK ; KEOLADEO NATIONAL-PARK ; WORLDVIEW-2 ; ACCURACY ; CLASSIFIERS ; AREAS ; TREES |
WOS类目 | Green & Sustainable Science & Technology ; Environmental Sciences |
WOS研究方向 | Science & Technology - Other Topics ; Environmental Sciences & Ecology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/367529 |
作者单位 | [Deval, Kundan; Joshi, P. K.] Jawaharlal Nehru Univ, Sch Environm Sci, New Delhi 110067, India; [Joshi, P. K.] Jawaharlal Nehru Univ, Special Ctr Disaster Res, New Delhi 110067, India |
推荐引用方式 GB/T 7714 | Deval, Kundan,Joshi, P. K.. Vegetation type and land cover mapping in a semi-arid heterogeneous forested wetland of India: comparing image classification algorithms[J],2021. |
APA | Deval, Kundan,&Joshi, P. K..(2021).Vegetation type and land cover mapping in a semi-arid heterogeneous forested wetland of India: comparing image classification algorithms.ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY. |
MLA | Deval, Kundan,et al."Vegetation type and land cover mapping in a semi-arid heterogeneous forested wetland of India: comparing image classification algorithms".ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY (2021). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Deval, Kundan]的文章 |
[Joshi, P. K.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Deval, Kundan]的文章 |
[Joshi, P. K.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Deval, Kundan]的文章 |
[Joshi, P. K.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。