Arid
DOI10.1007/s10668-021-01596-6
Vegetation type and land cover mapping in a semi-arid heterogeneous forested wetland of India: comparing image classification algorithms
Deval, Kundan; Joshi, P. K.
通讯作者Joshi, PK (corresponding author), Jawaharlal Nehru Univ, Sch Environm Sci, New Delhi 110067, India. ; Joshi, PK (corresponding author), Jawaharlal Nehru Univ, Special Ctr Disaster Res, New Delhi 110067, India.
来源期刊ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY
ISSN1387-585X
EISSN1573-2975
出版年2021-06
英文摘要The present study evaluates and compares performance of three supervised classification algorithms namely Maximum Likelihood (MXL), Artificial Neural Network (ANN) and Support Vector Machine (SVM), using very high resolution WorldView-2 satellite imagery for vegetation type/land cover (VT/LC) mapping in Keoladeo National Park (KNP), India. We mapped 16 (8 gregarious VT and 8 LC) classes, and used Bootstrap (with 100 iterations) method for accuracy assessment. All three algorithms produced high overall accuracy (OA) (67-85%) and kappa (K) (65-83) values. Visual comparison of the predictions revealed that SVM (OA = 85.12% (K = 83.9) with 3.85% width of confidence interval) performed the best followed by ANN (69.72% (67.32) with 4.43%) and MXL (67.37% (65.22) with 4.33%). This research provides insight for selection of classification algorithm for detailed VT/LC mapping of wetland associated systems using very high resolution satellite data. The findings of this research are useful for environmental management, restoration and conservation planning of KNP, India. The database will be of high value for future development and sustainability issues in the park.
英文关键词Vegetation type Land cover Semi-arid wetland Maximum Likelihood (MXL) Artificial Neural Network (ANN) Support Vector Machine (SVM) WorldView2
类型Article ; Early Access
语种英语
收录类别SCI-E
WOS记录号WOS:000664808200003
WOS关键词SUPPORT VECTOR MACHINES ; ARTIFICIAL NEURAL-NETWORK ; KEOLADEO NATIONAL-PARK ; WORLDVIEW-2 ; ACCURACY ; CLASSIFIERS ; AREAS ; TREES
WOS类目Green & Sustainable Science & Technology ; Environmental Sciences
WOS研究方向Science & Technology - Other Topics ; Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/367529
作者单位[Deval, Kundan; Joshi, P. K.] Jawaharlal Nehru Univ, Sch Environm Sci, New Delhi 110067, India; [Joshi, P. K.] Jawaharlal Nehru Univ, Special Ctr Disaster Res, New Delhi 110067, India
推荐引用方式
GB/T 7714
Deval, Kundan,Joshi, P. K.. Vegetation type and land cover mapping in a semi-arid heterogeneous forested wetland of India: comparing image classification algorithms[J],2021.
APA Deval, Kundan,&Joshi, P. K..(2021).Vegetation type and land cover mapping in a semi-arid heterogeneous forested wetland of India: comparing image classification algorithms.ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY.
MLA Deval, Kundan,et al."Vegetation type and land cover mapping in a semi-arid heterogeneous forested wetland of India: comparing image classification algorithms".ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Deval, Kundan]的文章
[Joshi, P. K.]的文章
百度学术
百度学术中相似的文章
[Deval, Kundan]的文章
[Joshi, P. K.]的文章
必应学术
必应学术中相似的文章
[Deval, Kundan]的文章
[Joshi, P. K.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。