Arid
DOI10.1109/IS3C50286.2020.00095
Short-term Photovoltaic Power Forecasting Based on Improved Firefly Algorithm to optimize support vector machine
Nsengimana, Cyprien; Han, XinTong; Wang, HaiYu; Shen, Xiu Jun; Li, Lingling
通讯作者Nsengimana, C (corresponding author), Hebei Univ Technol, Sch Elect Engn, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China.
会议名称International Symposium on Computer, Consumer and Control (IS3C)
会议日期NOV 13-16, 2020
会议地点Natl Chin Yi Univ Technol, Taichung, TAIWAN
英文摘要With the current increasing demand in energy consumption, there is a huge increase of prominent energy problems that require us to imperatively seek for the new green energy sources. Photovoltaic power generation is one of the most feasible power generation methods due to its high cleanliness and static characteristics. 'This paper proposes a photoelectric power prediction method based on an improved firefly algorithm to optimize support vector machines (SVM) for short-term prediction. We effectively combine the regression support vector machine (SVR) with the modified firefly algorithm (MFFA) and use the firefly estimation method to determine the best fitness penalty factor c and kernel function g, so that the support vector machine can better predict the photovoltaic power. In order to make the firefly algorithm to optimize the support vector machine faster, we improved the firefly algorithm step factor a and introduced a weight coefficient ca. Compared with conventional techniques, this method has better prediction results and prediction speed is also better than the traditional intelligent optimization models. Let's take the data from a photovoltaic base in the Desert Knowledge Australian Solar Energy Centre (DKASC) as an example.
英文关键词short-term prediction support vector machine improved firefly algorithm prediction speed
来源出版物2020 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2020)
ISSN2476-1052
出版年2021
页码344-346
ISBN978-1-7281-9362-5
出版者IEEE
类型Proceedings Paper
语种英语
收录类别CPCI-S
WOS记录号WOS:000669743300089
WOS关键词NEURAL-NETWORK ; PREDICTION
WOS类目Computer Science, Theory & Methods
WOS研究方向Computer Science
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/365655
作者单位[Nsengimana, Cyprien; Han, XinTong; Wang, HaiYu; Shen, Xiu Jun; Li, Lingling] Hebei Univ Technol, Sch Elect Engn, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China
推荐引用方式
GB/T 7714
Nsengimana, Cyprien,Han, XinTong,Wang, HaiYu,et al. Short-term Photovoltaic Power Forecasting Based on Improved Firefly Algorithm to optimize support vector machine[C]:IEEE,2021:344-346.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nsengimana, Cyprien]的文章
[Han, XinTong]的文章
[Wang, HaiYu]的文章
百度学术
百度学术中相似的文章
[Nsengimana, Cyprien]的文章
[Han, XinTong]的文章
[Wang, HaiYu]的文章
必应学术
必应学术中相似的文章
[Nsengimana, Cyprien]的文章
[Han, XinTong]的文章
[Wang, HaiYu]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。