Arid
DOI10.1109/WCNC49053.2021.9417127
Deep Reinforcement Learning-based Task Offloading in Satellite-Terrestrial Edge Computing Networks
Zhu, Dali; Liu, Haitao; Li, Ting; Sun, Jiyan; Liang, Jie; Zhang, Hangsheng; Geng, Liru; Liu, Yudong
通讯作者Liu, YD (corresponding author), Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China. ; Liu, YD (corresponding author), Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China.
会议名称IEEE Wireless Communications and Networking Conference (WCNC)
会议日期MAR 29-APR 01, 2021
会议地点Nanjing, PEOPLES R CHINA
英文摘要In remote regions (e.g., mountain and desert), cellular networks are usually sparsely deployed or unavailable. With the appearance of new applications (e.g., industrial automation and environment monitoring) in remote regions, resource-constrained terminals become unable to meet the latency requirements. Meanwhile, offloading tasks to urban terrestrial cloud (TC) via satellite link will lead to high delay. To tackle above issues, Satellite Edge Computing architecture is proposed, i.e., users can offload computing tasks to visible satellites for executing. However, existing works are usually limited to offload tasks in pure satellite networks, and make offloading decisions based on the predefined models of users. Besides, the runtime consumption of existing algorithms is rather high. In this paper, we study the task offloading problem in satellite-terrestrial edge computing networks, where tasks can be executed by satellite or urban TC. The proposed Deep Reinforcement learning-based Task Offloading (DRTO) algorithm can accelerate learning process by adjusting the number of candidate locations. In addition, offloading location and bandwidth allocation only depend on the current channel states. Simulation results show that DRTO achieves near-optimal offloading cost performance with much less runtime consumption, which is more suitable for satellite-terrestrial network with fast fading channel.
英文关键词Satellite-terrestrial networks Edge computing Deep reinforcement learning Computation offloading Mixed-integer programming
来源出版物2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC)
ISSN1525-3511
出版年2021
ISBN978-1-7281-9505-6
出版者IEEE
类型Proceedings Paper
语种英语
开放获取类型Green Submitted
收录类别CPCI-S
WOS记录号WOS:000704226500014
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS研究方向Computer Science ; Engineering ; Telecommunications
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/365654
作者单位[Zhu, Dali; Liu, Haitao; Li, Ting; Sun, Jiyan; Liang, Jie; Zhang, Hangsheng; Geng, Liru; Liu, Yudong] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China; [Zhu, Dali; Liu, Haitao; Li, Ting; Liang, Jie; Zhang, Hangsheng; Liu, Yudong] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Dali,Liu, Haitao,Li, Ting,et al. Deep Reinforcement Learning-based Task Offloading in Satellite-Terrestrial Edge Computing Networks[C]:IEEE,2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Dali]的文章
[Liu, Haitao]的文章
[Li, Ting]的文章
百度学术
百度学术中相似的文章
[Zhu, Dali]的文章
[Liu, Haitao]的文章
[Li, Ting]的文章
必应学术
必应学术中相似的文章
[Zhu, Dali]的文章
[Liu, Haitao]的文章
[Li, Ting]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。