Arid
Dynamic risk-based fault prediction of chemical processes using online sparse model identification
Bhadriraju, Bhavana; Kwon, Joseph Sang-Il; Khan, Faisal
通讯作者Bhadriraju, B (corresponding author), Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77845 USA.
会议名称American Control Conference (ACC)
会议日期MAY 25-28, 2021
会议地点ELECTR NETWORK
英文摘要Fault prognosis has emerged as an essential monitoring technique that predicts the occurrence of a fault and provides a guide for taking an appropriate action before the fault propagates into a failure. This is especially useful for industrial systems with growing process complexities. Recently, data-based prognosis methods have become popular because of their ease of implementation and availability of abundant data. However, at times when the process conditions vary, the offline trained models are not sufficient to predict the changing dynamics. In such situations, it is useful to have an adaptive model that can readily accommodate the dynamical changes. Hence, we propose a systematic approach that combines operable adaptive sparse identification of systems (OASIS) and dynamic risk assessment for fault prediction. At every sampling instance, the OASIS algorithm is used to adaptively predict the future dynamics for a certain period of time-steps. This multi-step prediction approach is utilized to estimate the process risk associated with a fault in an online manner. A fault is expected to occur if the maximum risk value from the prediction window exceeds a pre-determined threshold. For demonstration, we apply the proposed method to predict the occurrence of a process fault in a chemical reactor earlier than it actually affects the process.
来源出版物2021 AMERICAN CONTROL CONFERENCE (ACC)
ISSN0743-1619
EISSN2378-5861
出版年2021
ISBN978-1-6654-4197-1
出版者IEEE
类型Proceedings Paper
语种英语
收录类别CPCI-S
WOS记录号WOS:000702263305009
WOS关键词PROGNOSIS ; SYSTEMS
WOS类目Automation & Control Systems ; Engineering, Electrical & Electronic
WOS研究方向Automation & Control Systems ; Engineering
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/365608
作者单位[Bhadriraju, Bhavana; Kwon, Joseph Sang-Il; Khan, Faisal] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77845 USA
推荐引用方式
GB/T 7714
Bhadriraju, Bhavana,Kwon, Joseph Sang-Il,Khan, Faisal. Dynamic risk-based fault prediction of chemical processes using online sparse model identification[C]:IEEE,2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bhadriraju, Bhavana]的文章
[Kwon, Joseph Sang-Il]的文章
[Khan, Faisal]的文章
百度学术
百度学术中相似的文章
[Bhadriraju, Bhavana]的文章
[Kwon, Joseph Sang-Il]的文章
[Khan, Faisal]的文章
必应学术
必应学术中相似的文章
[Bhadriraju, Bhavana]的文章
[Kwon, Joseph Sang-Il]的文章
[Khan, Faisal]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。