Arid
DOI10.1002/cem.3223
Mixtures of QSAR models: Learning application domains of pK a predicto rs
Dorgo, Gyula; Peter Hamadi, Omar; Varga, Tamas; Abonyi, Janos
通讯作者Abonyi, J (corresponding author), Univ Pannonia, Dept Proc Engn, Egyet Str 10,POB 158, H-8200 Veszprem, Hungary.
会议名称37th Meeting of Hungarian Chemometricians
会议日期SEP 08-12, 2019
会议地点Karcag, HUNGARY
英文摘要Quantitative structure-activity relationship models (QSAR models) predict the physical properties or biological effects based on physicochemical properties or molecular descriptors of chemical structures. Our work focuses on the construction of optimal linear and nonlinear weighted mixes of individual QSAR models to more accurately predict their performance. How the splitting of the application domain by a nonlinear gating network in a mixture of experts model structure is suitable for the determination of the optimal domain-specific QSAR model and how the optimal QSAR model for certain chemical groups can be determined is highlighted. The input of the gating network is arbitrarily formed by the various molecular structure descriptors and/or even the prediction of the individual QSAR models. The applicability of the method is demonstrated on the pK a values of the OASIS database (1912 chemicals) by the combination of four acidic pK a predictions of the OECD QSAR Toolbox. According to the results, the prediction performance was enhanced by more than 15% (root-mean-square error [RMSE] value) compared with the predictions of the best individual QSAR model.
英文关键词ensemble models mixture of models model selection pK(a) prediction
来源出版物JOURNAL OF CHEMOMETRICS
ISSN0886-9383
EISSN1099-128X
出版年2020
卷号34
期号4
出版者WILEY
类型Article; Proceedings Paper
语种英语
收录类别CPCI-S
WOS记录号WOS:000510555300001
WOS关键词QUANTITATIVE STRUCTURE-ACTIVITY ; APPLICABILITY DOMAIN ; NEURAL-NETWORK ; DRUG DESIGN ; EXPERTS ; VALUES
WOS类目Automation & Control Systems ; Chemistry, Analytical ; Computer Science, Artificial Intelligence ; Instruments & Instrumentation ; Mathematics, Interdisciplinary Applications ; Statistics & Probability
WOS研究方向Automation & Control Systems ; Chemistry ; Computer Science ; Instruments & Instrumentation ; Mathematics
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/365527
作者单位[Dorgo, Gyula; Peter Hamadi, Omar; Varga, Tamas; Abonyi, Janos] Pannon Egyet, MTA PE Lendulet Complex Syst Monitoring Res Grp, Veszprem, Hungary; [Dorgo, Gyula; Peter Hamadi, Omar; Varga, Tamas; Abonyi, Janos] Univ Pannonia, Dept Proc Engn, Egyet Str 10,POB 158, H-8200 Veszprem, Hungary
推荐引用方式
GB/T 7714
Dorgo, Gyula,Peter Hamadi, Omar,Varga, Tamas,et al. Mixtures of QSAR models: Learning application domains of pK a predicto rs[C]:WILEY,2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dorgo, Gyula]的文章
[Peter Hamadi, Omar]的文章
[Varga, Tamas]的文章
百度学术
百度学术中相似的文章
[Dorgo, Gyula]的文章
[Peter Hamadi, Omar]的文章
[Varga, Tamas]的文章
必应学术
必应学术中相似的文章
[Dorgo, Gyula]的文章
[Peter Hamadi, Omar]的文章
[Varga, Tamas]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。