Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1002/cem.3223 |
Mixtures of QSAR models: Learning application domains of pK a predicto rs | |
Dorgo, Gyula; Peter Hamadi, Omar; Varga, Tamas; Abonyi, Janos | |
通讯作者 | Abonyi, J (corresponding author), Univ Pannonia, Dept Proc Engn, Egyet Str 10,POB 158, H-8200 Veszprem, Hungary. |
会议名称 | 37th Meeting of Hungarian Chemometricians |
会议日期 | SEP 08-12, 2019 |
会议地点 | Karcag, HUNGARY |
英文摘要 | Quantitative structure-activity relationship models (QSAR models) predict the physical properties or biological effects based on physicochemical properties or molecular descriptors of chemical structures. Our work focuses on the construction of optimal linear and nonlinear weighted mixes of individual QSAR models to more accurately predict their performance. How the splitting of the application domain by a nonlinear gating network in a mixture of experts model structure is suitable for the determination of the optimal domain-specific QSAR model and how the optimal QSAR model for certain chemical groups can be determined is highlighted. The input of the gating network is arbitrarily formed by the various molecular structure descriptors and/or even the prediction of the individual QSAR models. The applicability of the method is demonstrated on the pK a values of the OASIS database (1912 chemicals) by the combination of four acidic pK a predictions of the OECD QSAR Toolbox. According to the results, the prediction performance was enhanced by more than 15% (root-mean-square error [RMSE] value) compared with the predictions of the best individual QSAR model. |
英文关键词 | ensemble models mixture of models model selection pK(a) prediction |
来源出版物 | JOURNAL OF CHEMOMETRICS |
ISSN | 0886-9383 |
EISSN | 1099-128X |
出版年 | 2020 |
卷号 | 34 |
期号 | 4 |
出版者 | WILEY |
类型 | Article; Proceedings Paper |
语种 | 英语 |
收录类别 | CPCI-S |
WOS记录号 | WOS:000510555300001 |
WOS关键词 | QUANTITATIVE STRUCTURE-ACTIVITY ; APPLICABILITY DOMAIN ; NEURAL-NETWORK ; DRUG DESIGN ; EXPERTS ; VALUES |
WOS类目 | Automation & Control Systems ; Chemistry, Analytical ; Computer Science, Artificial Intelligence ; Instruments & Instrumentation ; Mathematics, Interdisciplinary Applications ; Statistics & Probability |
WOS研究方向 | Automation & Control Systems ; Chemistry ; Computer Science ; Instruments & Instrumentation ; Mathematics |
资源类型 | 会议论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/365527 |
作者单位 | [Dorgo, Gyula; Peter Hamadi, Omar; Varga, Tamas; Abonyi, Janos] Pannon Egyet, MTA PE Lendulet Complex Syst Monitoring Res Grp, Veszprem, Hungary; [Dorgo, Gyula; Peter Hamadi, Omar; Varga, Tamas; Abonyi, Janos] Univ Pannonia, Dept Proc Engn, Egyet Str 10,POB 158, H-8200 Veszprem, Hungary |
推荐引用方式 GB/T 7714 | Dorgo, Gyula,Peter Hamadi, Omar,Varga, Tamas,et al. Mixtures of QSAR models: Learning application domains of pK a predicto rs[C]:WILEY,2020. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。