Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1109/IGARSS39084.2020.9323459 |
SOIL MOISTURE ESTIMATION BASED ON LANDSAT-8 AND MODIS IN THE UPSTREAM OF LUAN RIVER BASIN, CHINA | |
Li, Rui; Shi, Jiancheng; Zhao, Tianjie; Wang, Tianxing; Lu, Shanlong | |
通讯作者 | Shi, JC (corresponding author), Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China. |
会议名称 | IEEE International Geoscience and Remote Sensing Symposium (IGARSS) |
会议日期 | SEP 26-OCT 02, 2020 |
会议地点 | ELECTR NETWORK |
英文摘要 | Optical and thermal infrared remote sensing images highly integrate spatial heterogeneity information (land surface soil, vegetation and water). This paper evaluated the capacity of Landsat-8 and Moderate-resolution Imaging Spectroradiometer (MODIS) remote sensing indices and empirical relationship models for soil moisture estimations at different depths. The results show that (1) compared with other Landsat-8 indices, shortwave infrared based Surface Water Capacity Index (SWCI) has higher correlation with 10-50 cm depth soil moisture. The comparison based on MODIS daily indices confirms that SWCI can monitor 20 cm soil moisture with more stability; (2) The quadratic polynomial model based on Land Surface Temperature (LST) and SWCI possessed highest accuracy among all empirical models. The average coefficient of determination (R-2) increases to 0.257 from 0.150 based on LST-NDVI linear model and 0.176 based on LST-SWCI linear model. Soil moisture analysis at both 30 m and 1 km spatial scale suggest that optical remote sensing could indirectly reflect soil moisture variation with higher precise and more stability in root layer rather than top-most layer. |
英文关键词 | Soil moisture Optical remote sensing Quadratic polynomial model Semi-arid region |
来源出版物 | IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM |
出版年 | 2020 |
页码 | 4922-4925 |
ISBN | 978-1-7281-6374-1 |
出版者 | IEEE |
类型 | Proceedings Paper |
语种 | 英语 |
收录类别 | CPCI-S |
WOS记录号 | WOS:000664335304187 |
WOS关键词 | VEGETATION COVER |
WOS类目 | Computer Science, Artificial Intelligence ; Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Optics |
WOS研究方向 | Computer Science ; Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Optics |
资源类型 | 会议论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/365518 |
作者单位 | [Li, Rui; Shi, Jiancheng; Zhao, Tianjie; Wang, Tianxing] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China; [Lu, Shanlong] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100101, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Rui,Shi, Jiancheng,Zhao, Tianjie,et al. SOIL MOISTURE ESTIMATION BASED ON LANDSAT-8 AND MODIS IN THE UPSTREAM OF LUAN RIVER BASIN, CHINA[C]:IEEE,2020:4922-4925. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。