Arid
DOI10.1109/IGARSS39084.2020.9323459
SOIL MOISTURE ESTIMATION BASED ON LANDSAT-8 AND MODIS IN THE UPSTREAM OF LUAN RIVER BASIN, CHINA
Li, Rui; Shi, Jiancheng; Zhao, Tianjie; Wang, Tianxing; Lu, Shanlong
通讯作者Shi, JC (corresponding author), Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China.
会议名称IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
会议日期SEP 26-OCT 02, 2020
会议地点ELECTR NETWORK
英文摘要Optical and thermal infrared remote sensing images highly integrate spatial heterogeneity information (land surface soil, vegetation and water). This paper evaluated the capacity of Landsat-8 and Moderate-resolution Imaging Spectroradiometer (MODIS) remote sensing indices and empirical relationship models for soil moisture estimations at different depths. The results show that (1) compared with other Landsat-8 indices, shortwave infrared based Surface Water Capacity Index (SWCI) has higher correlation with 10-50 cm depth soil moisture. The comparison based on MODIS daily indices confirms that SWCI can monitor 20 cm soil moisture with more stability; (2) The quadratic polynomial model based on Land Surface Temperature (LST) and SWCI possessed highest accuracy among all empirical models. The average coefficient of determination (R-2) increases to 0.257 from 0.150 based on LST-NDVI linear model and 0.176 based on LST-SWCI linear model. Soil moisture analysis at both 30 m and 1 km spatial scale suggest that optical remote sensing could indirectly reflect soil moisture variation with higher precise and more stability in root layer rather than top-most layer.
英文关键词Soil moisture Optical remote sensing Quadratic polynomial model Semi-arid region
来源出版物IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM
出版年2020
页码4922-4925
ISBN978-1-7281-6374-1
出版者IEEE
类型Proceedings Paper
语种英语
收录类别CPCI-S
WOS记录号WOS:000664335304187
WOS关键词VEGETATION COVER
WOS类目Computer Science, Artificial Intelligence ; Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Optics
WOS研究方向Computer Science ; Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Optics
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/365518
作者单位[Li, Rui; Shi, Jiancheng; Zhao, Tianjie; Wang, Tianxing] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China; [Lu, Shanlong] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Li, Rui,Shi, Jiancheng,Zhao, Tianjie,et al. SOIL MOISTURE ESTIMATION BASED ON LANDSAT-8 AND MODIS IN THE UPSTREAM OF LUAN RIVER BASIN, CHINA[C]:IEEE,2020:4922-4925.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Rui]的文章
[Shi, Jiancheng]的文章
[Zhao, Tianjie]的文章
百度学术
百度学术中相似的文章
[Li, Rui]的文章
[Shi, Jiancheng]的文章
[Zhao, Tianjie]的文章
必应学术
必应学术中相似的文章
[Li, Rui]的文章
[Shi, Jiancheng]的文章
[Zhao, Tianjie]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。