Arid
DOI10.3390/w13162273
Spatial Prediction of Groundwater Potentiality in Large Semi-Arid and Karstic Mountainous Region Using Machine Learning Models
Namous, Mustapha; Hssaisoune, Mohammed; Pradhan, Biswajeet; Lee, Chang-Wook; Alamri, Abdullah; Elaloui, Abdenbi; Edahbi, Mohamed; Krimissa, Samira; Eloudi, Hasna; Ouayah, Mustapha; Elhimer, Hicham; Tagma, Tarik
通讯作者Pradhan, B (corresponding author), Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Adv Modelling & Geospatial Informat Syst CAMG, Sydney, NSW 2007, Australia. ; Pradhan, B (corresponding author), Univ Kebangsaan Malaysia, Inst Climate Change, Earth Observat Ctr, Bangi 43600, Selangor, Malaysia. ; Lee, CW (corresponding author), Kangwon Natl Univ, Div Sci Educ, Chuncheon Si 24341, Gangwon Do, South Korea.
来源期刊WATER
EISSN2073-4441
出版年2021
卷号13期号:16
英文摘要The drinking and irrigation water scarcity is a major global issue, particularly in arid and semi-arid zones. In rural areas, groundwater could be used as an alternative and additional water supply source in order to reduce human suffering in terms of water scarcity. In this context, the purpose of the present study is to facilitate groundwater potentiality mapping via spatial-modelling techniques, individual and ensemble machine-learning models. Random forest (RF), logistic regression (LR), decision tree (DT) and artificial neural networks (ANNs) are the main algorithms used in this study. The preparation of groundwater potentiality maps was assembled into 11 ensembles of models. Overall, about 374 groundwater springs was identified and inventoried in the mountain area. The spring inventory data was randomly divided into training (75%) and testing (25%) datasets. Twenty-four groundwater influencing factors (GIFs) were selected based on a multicollinearity test and the information gain calculation. The results of the groundwater potentiality mapping were validated using statistical measures and the receiver operating characteristic curve (ROC) method. Finally, a ranking of the 15 models was achieved with the prioritization rank method using the compound factor (CF) method. The ensembles of models are the most stable and suitable for groundwater potentiality mapping in mountainous aquifers compared to individual models based on success and prediction rate. The most efficient model using the area under the curve validation method is the RF-LR-DT-ANN ensemble of models. Moreover, the results of the prioritization rank indicate that the best models are the RF-DT and RF-LR-DT ensembles of models.
英文关键词drinking and irrigation water scarcity groundwater potential mapping machine learning remote sensing GIS karstic mountainous aquifers Morocco
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000690233900001
WOS关键词ER-RABIA BASIN ; LOGISTIC-REGRESSION ; RECHARGE ; GIS ; SCALE ; WATER ; RISK ; CLIMATE ; AQUIFER
WOS类目Environmental Sciences ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Water Resources
来源机构King Saud University
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/364836
作者单位[Namous, Mustapha; Krimissa, Samira; Ouayah, Mustapha] Sultan Moulay Slimane Univ, Polydisciplinary Fac, Lab Biotechnol & Sustainable Dev Nat Resources, Mghila BP 592, Beni Mellal 23000, Morocco; [Hssaisoune, Mohammed; Eloudi, Hasna] Ibn Zohr Univ, Fac Sci, Appl Geol & Geoenvironm Lab, Agadir 80000, Morocco; [Hssaisoune, Mohammed] Ibn Zohr Univ, Fac Sci Appl, BO 6146, Ait Melloul 86153, Morocco; [Pradhan, Biswajeet] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Adv Modelling & Geospatial Informat Syst CAMG, Sydney, NSW 2007, Australia; [Pradhan, Biswajeet] Univ Kebangsaan Malaysia, Inst Climate Change, Earth Observat Ctr, Bangi 43600, Selangor, Malaysia; [Lee, Chang-Wook] Kangwon Natl Univ, Div Sci Educ, Chuncheon Si 24341, Gangwon Do, South Korea; [Alamri, Abdullah] King Saud Univ, Coll Sci, Dept Geol & Geophys, POB 2455, Riyadh 11451, Saudi Arabia; [Elaloui, Abdenbi] Sultan Moulay Slimane Univ, Fac Sci & Tech, Water & Remote Sensing Team GEVARET, Beni Mellal 23000, Morocco; [Edahbi, Mohamed] Sul...
推荐引用方式
GB/T 7714
Namous, Mustapha,Hssaisoune, Mohammed,Pradhan, Biswajeet,et al. Spatial Prediction of Groundwater Potentiality in Large Semi-Arid and Karstic Mountainous Region Using Machine Learning Models[J]. King Saud University,2021,13(16).
APA Namous, Mustapha.,Hssaisoune, Mohammed.,Pradhan, Biswajeet.,Lee, Chang-Wook.,Alamri, Abdullah.,...&Tagma, Tarik.(2021).Spatial Prediction of Groundwater Potentiality in Large Semi-Arid and Karstic Mountainous Region Using Machine Learning Models.WATER,13(16).
MLA Namous, Mustapha,et al."Spatial Prediction of Groundwater Potentiality in Large Semi-Arid and Karstic Mountainous Region Using Machine Learning Models".WATER 13.16(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Namous, Mustapha]的文章
[Hssaisoune, Mohammed]的文章
[Pradhan, Biswajeet]的文章
百度学术
百度学术中相似的文章
[Namous, Mustapha]的文章
[Hssaisoune, Mohammed]的文章
[Pradhan, Biswajeet]的文章
必应学术
必应学术中相似的文章
[Namous, Mustapha]的文章
[Hssaisoune, Mohammed]的文章
[Pradhan, Biswajeet]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。