Arid
DOI10.1016/j.scitotenv.2021.149831
Multi-model driven by diverse precipitation datasets increases confidence in identifying dominant factors for runoff change in a subbasin of the Qaidam Basin of China
Lv, Aifeng; Qi, Shanshan; Wang, Gangsheng
通讯作者Lv, AF (corresponding author), Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China. ; Wang, GS (corresponding author), Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China.
来源期刊SCIENCE OF THE TOTAL ENVIRONMENT
ISSN0048-9697
EISSN1879-1026
出版年2022
卷号802
英文摘要Quantifying the climatic and anthropogenic effects on hydrological processes has received considerable atten-tion. However, diverse conclusions could be drawn when different models and forcing datasets are used. This is particularly uncertain and challenging in poorly gauged arid regions. Here we aim to tackle this issue in the poorly gauged Xiangride River Basin within the Qaidam Basin, one of the three prominent inland basins in China. We applied two distinct models (Budyko Mezentsev-Choudhurdy-Yang and process-based SWAT) to a poorly-gauged inland basin in West China. The model simulations were driven by four precipitation products in-cluding Tropical Rainfall Measuring Mission (TRMM) 3B42 V7, Global Precipitation Measurement (GPM) IMERG V6, Multi-Source Weighted-Ensemble Precipitation (MSWEP) and China Meteorological Assimilation Driving Datasets (CMADS). Our results indicate that MSWEP performed best (NSE = 0.64 vs. 0.36-0.59 for other datasets) in the baseline period (2009-2012), whereas CMADS was more accurate during the impacted period (2013-2016); CMADS and GPM might underestimate the precipitation in the baseline and impacted period, re-spectively. Hydrological processes during the impacted period are presumed to be influenced by climate varia-tion and/or human activities, compared to the relatively natural status in the baseline period. We conclude that runoff decline between the two periods was mainly affected by human activities (-66 to 94%), whereas the contribution of climate variation was more likely positive. A literature survey reveals that major anthropo-genic effects in the study area includes reservoir, road construction and cropland expansion that could lead to runoff decrease. We recommend the use of process-based model (e.g., SWAT) in studies like this, as process- based models driven by high-quality remote-sensed or reanalysis climate datasets, better represents the spatiotemporal hydrological change under altered conditions, whereas the steady-state assumption of soil water for the Budyko model may not be fully satisfied during a short period. (c) 2021 Published by Elsevier B.V.
英文关键词Inland basin Climatic variation Human activities Precipitation products Predictions in ungauged basins (PUBs) SWAT
类型Article
语种英语
开放获取类型hybrid
收录类别SCI-E
WOS记录号WOS:000701773100005
WOS关键词CLIMATE-CHANGE IMPACTS ; HAIHE RIVER-BASIN ; HYDROLOGICAL EVALUATION ; BUDYKO HYPOTHESIS ; WATER-RESOURCES ; STREAMFLOW ; SWAT ; PRODUCTS ; VARIABILITY ; CATCHMENTS
WOS类目Environmental Sciences
WOS研究方向Environmental Sciences & Ecology
来源机构中国科学院地理科学与资源研究所
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/364608
作者单位[Lv, Aifeng; Qi, Shanshan] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China; [Lv, Aifeng; Qi, Shanshan] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Wang, Gangsheng] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
推荐引用方式
GB/T 7714
Lv, Aifeng,Qi, Shanshan,Wang, Gangsheng. Multi-model driven by diverse precipitation datasets increases confidence in identifying dominant factors for runoff change in a subbasin of the Qaidam Basin of China[J]. 中国科学院地理科学与资源研究所,2022,802.
APA Lv, Aifeng,Qi, Shanshan,&Wang, Gangsheng.(2022).Multi-model driven by diverse precipitation datasets increases confidence in identifying dominant factors for runoff change in a subbasin of the Qaidam Basin of China.SCIENCE OF THE TOTAL ENVIRONMENT,802.
MLA Lv, Aifeng,et al."Multi-model driven by diverse precipitation datasets increases confidence in identifying dominant factors for runoff change in a subbasin of the Qaidam Basin of China".SCIENCE OF THE TOTAL ENVIRONMENT 802(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lv, Aifeng]的文章
[Qi, Shanshan]的文章
[Wang, Gangsheng]的文章
百度学术
百度学术中相似的文章
[Lv, Aifeng]的文章
[Qi, Shanshan]的文章
[Wang, Gangsheng]的文章
必应学术
必应学术中相似的文章
[Lv, Aifeng]的文章
[Qi, Shanshan]的文章
[Wang, Gangsheng]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。