Arid
DOI10.1371/journal.pone.0251510
Development of artificial intelligence models for well groundwater quality simulation: Different modeling scenarios
Shiri, Naser; Shiri, Jalal; Yaseen, Zaher Mundher; Kim, Sungwon; Chung, Il-Moon; Nourani, Vahid; Zounemat-Kermani, Mohammad
通讯作者Yaseen, ZM (corresponding author), Univ Teknol Malaysia UTM, Sch Civil Engn, Fac Engn, Johor Baharu, Kagawa, Malaysia.
来源期刊PLOS ONE
ISSN1932-6203
出版年2021
卷号16期号:5
英文摘要Groundwater is one of the most important freshwater resources, especially in arid and semi-arid regions where the annual amounts of precipitation are small with frequent drought durations. Information on qualitative parameters of these valuable resources is very crucial as it might affect its applicability from agricultural, drinking, and industrial aspects. Although geo-statistics methods can provide insight about spatial distribution of quality factors, applications of advanced artificial intelligence (AI) models can contribute to produce more accurate results as robust alternative for such a complex geo-science problem. The present research investigates the capacity of several types of AI models for modeling four key water quality variables namely electrical conductivity (EC), sodium adsorption ratio (SAR), total dissolved solid (TDS) and Sulfate (SO4) using dataset obtained from 90 wells in Tabriz Plain, Iran; assessed by k-fold testing. Two different modeling scenarios were established to make simulations using other quality parameters and the geographical information. The obtained results confirmed the capabilities of the AI models for modeling the well groundwater quality variables. Among all the applied AI models, the developed hybrid support vector machine-firefly algorithm (SVM-FFA) model achieved the best predictability performance for both investigated scenarios. The introduced computer aid methodology provided a reliable technology for groundwater monitoring and assessment.
类型Article
语种英语
开放获取类型gold, Green Published
收录类别SCI-E
WOS记录号WOS:000664635700024
WOS关键词NEURAL-NETWORK PREDICTION ; FLUORIDE CONTAMINATION ; WATER-RESOURCES ; RIVER-BASIN ; REGRESSION ; MACHINE ; SYSTEM ; PLAIN ; CLASSIFICATION ; INFORMATION
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/364372
作者单位[Shiri, Naser] Univ Tabriz, Fac Civil Engn, Tabriz, Iran; [Shiri, Jalal] Univ Tabriz, Water Engn Dept, Fac Agr, Tabriz, Iran; [Shiri, Jalal; Nourani, Vahid] Univ Tabriz, Ctr Excellence Hydroinformat, Fac Civil Engn, Tabriz, Iran; [Yaseen, Zaher Mundher] Univ Teknol Malaysia UTM, Sch Civil Engn, Fac Engn, Johor Baharu, Kagawa, Malaysia; [Kim, Sungwon] Dongyang Univ, Dept Railrd Construct & Safety Engn, Yeongju, South Korea; [Chung, Il-Moon] Korea Inst Civil Engn & Bldg Technol, Dept Land Water & Environm Res, Goyang, South Korea; [Nourani, Vahid] Near East Univ, Fac Civil & Environm Engn, Near East Blvd,Via Mersin 10, Nicosia, Turkey; [Zounemat-Kermani, Mohammad] Shahid Bahonar Univ Kerman, Water Engn Dept, Kerman, Iran
推荐引用方式
GB/T 7714
Shiri, Naser,Shiri, Jalal,Yaseen, Zaher Mundher,et al. Development of artificial intelligence models for well groundwater quality simulation: Different modeling scenarios[J],2021,16(5).
APA Shiri, Naser.,Shiri, Jalal.,Yaseen, Zaher Mundher.,Kim, Sungwon.,Chung, Il-Moon.,...&Zounemat-Kermani, Mohammad.(2021).Development of artificial intelligence models for well groundwater quality simulation: Different modeling scenarios.PLOS ONE,16(5).
MLA Shiri, Naser,et al."Development of artificial intelligence models for well groundwater quality simulation: Different modeling scenarios".PLOS ONE 16.5(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shiri, Naser]的文章
[Shiri, Jalal]的文章
[Yaseen, Zaher Mundher]的文章
百度学术
百度学术中相似的文章
[Shiri, Naser]的文章
[Shiri, Jalal]的文章
[Yaseen, Zaher Mundher]的文章
必应学术
必应学术中相似的文章
[Shiri, Naser]的文章
[Shiri, Jalal]的文章
[Yaseen, Zaher Mundher]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。