Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/jpm11090902 |
MRI Deep Learning-Based Solution for Alzheimer's Disease Prediction | |
Saratxaga, Cristina L.; Moya, Iratxe; Picon, Artzai; Acosta, Marina; Moreno-Fernandez-de-Leceta, Aitor; Garrote, Estibaliz; Bereciartua-Perez, Arantza | |
通讯作者 | Saratxaga, CL (corresponding author), Basque Res & Technol Alliance BRTA, TECNALIA, Parque Tecnol Bizkaia,C Geldo Edificio 700, Derio 48160, Spain. |
来源期刊 | JOURNAL OF PERSONALIZED MEDICINE
![]() |
EISSN | 2075-4426 |
出版年 | 2021 |
卷号 | 11期号:9 |
英文摘要 | Background: Alzheimer's is a degenerative dementing disorder that starts with a mild memory impairment and progresses to a total loss of mental and physical faculties. The sooner the diagnosis is made, the better for the patient, as preventive actions and treatment can be started. Although tests such as the Mini-Mental State Tests Examination are usually used for early identification, diagnosis relies on magnetic resonance imaging (MRI) brain analysis. Methods: Public initiatives such as the OASIS (Open Access Series of Imaging Studies) collection provide neuroimaging datasets openly available for research purposes. In this work, a new method based on deep learning and image processing techniques for MRI-based Alzheimer's diagnosis is proposed and compared with previous literature works. Results: Our method achieves a balance accuracy (BAC) up to 0.93 for image-based automated diagnosis of the disease, and a BAC of 0.88 for the establishment of the disease stage (healthy tissue, very mild and severe stage). Conclusions: Results obtained surpassed the state-of-the-art proposals using the OASIS collection. This demonstrates that deep learning-based strategies are an effective tool for building a robust solution for Alzheimer's-assisted diagnosis based on MRI data. |
英文关键词 | deep learning classification Alzheimer's MRI OASIS |
类型 | Article |
语种 | 英语 |
开放获取类型 | Green Published, gold |
收录类别 | SCI-E ; SSCI |
WOS记录号 | WOS:000699575400001 |
WOS关键词 | OPEN ACCESS SERIES ; STRUCTURAL MRI ; DIAGNOSIS ; CLASSIFICATION ; SCALE ; YOUNG ; SIZE |
WOS类目 | Health Care Sciences & Services ; Medicine, General & Internal |
WOS研究方向 | Health Care Sciences & Services ; General & Internal Medicine |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/363979 |
作者单位 | [Saratxaga, Cristina L.; Picon, Artzai; Garrote, Estibaliz; Bereciartua-Perez, Arantza] Basque Res & Technol Alliance BRTA, TECNALIA, Parque Tecnol Bizkaia,C Geldo Edificio 700, Derio 48160, Spain; [Moya, Iratxe; Acosta, Marina; Moreno-Fernandez-de-Leceta, Aitor] Inst Ibermat Innovac, Unidad Inteligencia Artificial Ave Huetos, Edificio Azucarera, Vitoria 01010, Spain; [Garrote, Estibaliz] Univ Basque Country, Fac Med & Dent, Dept Cell Biol & Histol, Leioa 48940, Spain |
推荐引用方式 GB/T 7714 | Saratxaga, Cristina L.,Moya, Iratxe,Picon, Artzai,et al. MRI Deep Learning-Based Solution for Alzheimer's Disease Prediction[J],2021,11(9). |
APA | Saratxaga, Cristina L..,Moya, Iratxe.,Picon, Artzai.,Acosta, Marina.,Moreno-Fernandez-de-Leceta, Aitor.,...&Bereciartua-Perez, Arantza.(2021).MRI Deep Learning-Based Solution for Alzheimer's Disease Prediction.JOURNAL OF PERSONALIZED MEDICINE,11(9). |
MLA | Saratxaga, Cristina L.,et al."MRI Deep Learning-Based Solution for Alzheimer's Disease Prediction".JOURNAL OF PERSONALIZED MEDICINE 11.9(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。