Arid
DOI10.1016/j.jaridenv.2021.104599
Prediction of desert locust breeding areas using machine learning methods and SMOS (MIR_SMNRT2) Near Real Time product
Gomez, Diego; Salvador, Pablo; Sanz, Julia; Rodrigo, Juan Fernando; Gil, Jorge; Casanova, Jose Luis
通讯作者Gomez, D (corresponding author), Univ Valladolid, Remote Sensing Lab LATUV, Paseo Belen 11, Valladolid 47011, Spain.
来源期刊JOURNAL OF ARID ENVIRONMENTS
ISSN0140-1963
EISSN1095-922X
出版年2021
卷号194
英文摘要Despite satellite imagery is being used to identify suitable areas for desert locust, there is a lack of automatized and operational procedures in Near Real Time (NRT). The aim of this study was to assess the capacity of Soil Moisture Near Real Time Neural Network Level 2 product (MIR_SMNRT2) from the Soil Moisture and Ocean Salinity satellite (SMOS) to predict nymphs of desert locust. We used soil moisture time series (between 2016 and 2019) to build 6 machine learning models (logistic regression model glm, eXtreme Gradient Boosting xgbTree, Weighted k-Nearest Neighbors kknn, Feed-Forward Neural Networks and Multinomial Log-Linear Models nnet, support vector machine radial svmRadial, and random forest rf) over the entire recession area. Model results proved that spatial and/or temporal constraints in data sampling conditioned the predictive capacity of the selected machine learning algorithms. Furthermore, we used a forward selection procedure to evaluate the impact that time series data exert on modelling. Our results suggest that soil moisture data retrieved between 95 and 12 days (before the sighting) provided sufficient information to achieve acceptable predictive performances. This methodology can improve current preventive and control operations, it is site-specific, and could be used to other pests.
英文关键词Forecast tool Pests Remote sensing Soil moisture
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000691565800006
WOS关键词SOIL-MOISTURE ; EARTH OBSERVATION ; HABITAT
WOS类目Ecology ; Environmental Sciences
WOS研究方向Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/363752
作者单位[Gomez, Diego; Salvador, Pablo; Sanz, Julia; Rodrigo, Juan Fernando; Gil, Jorge; Casanova, Jose Luis] Univ Valladolid, Remote Sensing Lab LATUV, Paseo Belen 11, Valladolid 47011, Spain
推荐引用方式
GB/T 7714
Gomez, Diego,Salvador, Pablo,Sanz, Julia,et al. Prediction of desert locust breeding areas using machine learning methods and SMOS (MIR_SMNRT2) Near Real Time product[J],2021,194.
APA Gomez, Diego,Salvador, Pablo,Sanz, Julia,Rodrigo, Juan Fernando,Gil, Jorge,&Casanova, Jose Luis.(2021).Prediction of desert locust breeding areas using machine learning methods and SMOS (MIR_SMNRT2) Near Real Time product.JOURNAL OF ARID ENVIRONMENTS,194.
MLA Gomez, Diego,et al."Prediction of desert locust breeding areas using machine learning methods and SMOS (MIR_SMNRT2) Near Real Time product".JOURNAL OF ARID ENVIRONMENTS 194(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gomez, Diego]的文章
[Salvador, Pablo]的文章
[Sanz, Julia]的文章
百度学术
百度学术中相似的文章
[Gomez, Diego]的文章
[Salvador, Pablo]的文章
[Sanz, Julia]的文章
必应学术
必应学术中相似的文章
[Gomez, Diego]的文章
[Salvador, Pablo]的文章
[Sanz, Julia]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。