Arid
DOI10.1142/S0129065721500374
Arbitrary Scale Super-Resolution for Medical Images
Zhu, Jin; Tan, Chuan; Yang, Junwei; Yang, Guang; Lio, Pietro
通讯作者Zhu, J (corresponding author), Univ Cambridge, Dept Comp Sci & Technol, Cambridge CB3 0FD, England. ; Yang, G (corresponding author), Royal Brompton Hosp, Cardiovasc Res Ctr, London SW3 6NP6, England. ; Yang, G (corresponding author), Imperial Coll London, Natl Heart & Lung Inst, London SW7 2AZ, England.
来源期刊INTERNATIONAL JOURNAL OF NEURAL SYSTEMS
ISSN0129-0657
EISSN1793-6462
出版年2021
卷号31期号:10
英文摘要Single image super-resolution (SISR) aims to obtain a high-resolution output from one low-resolution image. Currently, deep learning-based SISR approaches have been widely discussed in medical image processing, because of their potential to achieve high-quality, high spatial resolution images without the cost of additional scans. However, most existing methods are designed for scale-specific SR tasks and are unable to generalize over magnification scales. In this paper, we propose an approach for medical image arbitrary-scale super-resolution (MIASSR), in which we couple meta-learning with generative adversarial networks (GANs) to super-resolve medical images at any scale of magnification in (1, 4]. Compared to state-of-the-art SISR algorithms on single-modal magnetic resonance (MR) brain images (OASIS-brains) and multi-modal MR brain images (BraTS), MIASSR achieves comparable fidelity performance and the best perceptual quality with the smallest model size. We also employ transfer learning to enable MIASSR to tackle SR tasks of new medical modalities, such as cardiac MR images (ACDC) and chest computed tomography images (COVID-CT). The source code of our work is also public. Thus, MIASSR has the potential to become a new foundational pre-/post-processing step in clinical image analysis tasks such as reconstruction, image quality enhancement, and segmentation.
英文关键词Super-resolution medical image analysis image processing generative adversarial networks meta learning transfer learning
类型Article
语种英语
开放获取类型hybrid
收录类别SCI-E
WOS记录号WOS:000696596800001
WOS类目Computer Science, Artificial Intelligence
WOS研究方向Computer Science
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/363654
作者单位[Zhu, Jin; Tan, Chuan; Yang, Junwei] Univ Cambridge, Dept Comp Sci & Technol, Cambridge CB3 0FD, England; [Yang, Guang] Royal Brompton Hosp, Cardiovasc Res Ctr, London SW3 6NP6, England; [Yang, Guang] Imperial Coll London, Natl Heart & Lung Inst, London SW7 2AZ, England; [Lio, Pietro] Univ Cambridge, Dept Comp Sci & Technol, Cambridge CB3 0FD, England
推荐引用方式
GB/T 7714
Zhu, Jin,Tan, Chuan,Yang, Junwei,et al. Arbitrary Scale Super-Resolution for Medical Images[J],2021,31(10).
APA Zhu, Jin,Tan, Chuan,Yang, Junwei,Yang, Guang,&Lio, Pietro.(2021).Arbitrary Scale Super-Resolution for Medical Images.INTERNATIONAL JOURNAL OF NEURAL SYSTEMS,31(10).
MLA Zhu, Jin,et al."Arbitrary Scale Super-Resolution for Medical Images".INTERNATIONAL JOURNAL OF NEURAL SYSTEMS 31.10(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Jin]的文章
[Tan, Chuan]的文章
[Yang, Junwei]的文章
百度学术
百度学术中相似的文章
[Zhu, Jin]的文章
[Tan, Chuan]的文章
[Yang, Junwei]的文章
必应学术
必应学术中相似的文章
[Zhu, Jin]的文章
[Tan, Chuan]的文章
[Yang, Junwei]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。