Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1109/JSTARS.2021.3108669 |
Aerosol Absorption Over Land Derived From the Ultra-Violet Aerosol Index by Deep Learning | |
Sun, Jiyunting; Veefkind, Pepijn; van Velthoven, Peter; Levelt, Pieternel F. | |
通讯作者 | Sun, JYT (corresponding author), Royal Netherlands Meteorol Inst, Dept R&D Satellite Observat, NL-3731 De Bilt, Netherlands. |
来源期刊 | IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
![]() |
ISSN | 1939-1404 |
EISSN | 2151-1535 |
出版年 | 2021 |
卷号 | 14页码:9692-9710 |
英文摘要 | Quantitative measurements of aerosol absorptive properties, e.g., the absorbing aerosol optical depth (AAOD) and the single scattering albedo (SSA), are important to reduce uncertainties of aerosol climate radiative forcing assessments. Currently, global retrievals of AAOD and SSA are mainly provided by the ground-based aerosol robotic network (AERONET), whereas it is still challenging to retrieve them from space. However, we found the AERONET AAOD has a relatively strong correlation with the satellite retrieved ultra-violet aerosol index (UVAI). Based on this, a numerical relation is built by a deep neural network (DNN) to predict global AAOD and SSA over land from the long-term UVAI record (2006-2019) provided by the ozone monitoring instrument (OMI) onboard Aura. The DNN predicted aerosol absorption is satisfying for samples with AOD at 550 nm larger than 0.1, and the DNN model performance is better for smaller absorbing aerosols (e.g., smoke) than larger ones (e.g., mineral dust). The comparison of the DNN predictions with AERONET shows a high correlation coefficient of 0.90 and a root mean square of 0.005 for the AAOD, and over 80% of samples are within the expected uncertainty of AERONET SSA (+/- 0.03). |
英文关键词 | Absorbing aerosol optical depth (AAOD) deep neural network (DDN) machine learning ozone monitoring instrument (OMI) single scattering albedo (SSA) ultra-violet aerosol index (UVAI) |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold, Green Published |
收录类别 | SCI-E |
WOS记录号 | WOS:000704824700004 |
WOS关键词 | IMAGING SPECTRORADIOMETER MISR ; SINGLE-SCATTERING ALBEDO ; OPTICAL DEPTH PRODUCTS ; LONG-TERM RECORD ; NEURAL-NETWORK ; DESERT DUST ; VERTICAL-DISTRIBUTION ; TROPOSPHERIC AEROSOL ; INVERSION ALGORITHM ; HEIGHT RETRIEVAL |
WOS类目 | Engineering, Electrical & Electronic ; Geography, Physical ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/363565 |
作者单位 | [Sun, Jiyunting; Veefkind, Pepijn] Royal Netherlands Meteorol Inst, Dept R&D Satellite Observat, NL-3731 De Bilt, Netherlands; [Sun, Jiyunting; Veefkind, Pepijn; Levelt, Pieternel F.] Delft Univ Technol, Dept Geosci & Remote Sensing GRS Civil Engn & Ge, NL-2628 Delft, Netherlands; [van Velthoven, Peter] Royal Netherlands Meteorol Inst, Dept R&D Weather & Climate Modeling, NL-3731 De Bilt, Netherlands; [Levelt, Pieternel F.] Natl Ctr Atmospher Res NCAR, Atmospher Chem Observat & Modeling Lab ACOM, Boulder, CO 80301 USA |
推荐引用方式 GB/T 7714 | Sun, Jiyunting,Veefkind, Pepijn,van Velthoven, Peter,et al. Aerosol Absorption Over Land Derived From the Ultra-Violet Aerosol Index by Deep Learning[J],2021,14:9692-9710. |
APA | Sun, Jiyunting,Veefkind, Pepijn,van Velthoven, Peter,&Levelt, Pieternel F..(2021).Aerosol Absorption Over Land Derived From the Ultra-Violet Aerosol Index by Deep Learning.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,14,9692-9710. |
MLA | Sun, Jiyunting,et al."Aerosol Absorption Over Land Derived From the Ultra-Violet Aerosol Index by Deep Learning".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 14(2021):9692-9710. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。