Arid
DOI10.1109/JSTARS.2021.3108669
Aerosol Absorption Over Land Derived From the Ultra-Violet Aerosol Index by Deep Learning
Sun, Jiyunting; Veefkind, Pepijn; van Velthoven, Peter; Levelt, Pieternel F.
通讯作者Sun, JYT (corresponding author), Royal Netherlands Meteorol Inst, Dept R&D Satellite Observat, NL-3731 De Bilt, Netherlands.
来源期刊IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
ISSN1939-1404
EISSN2151-1535
出版年2021
卷号14页码:9692-9710
英文摘要Quantitative measurements of aerosol absorptive properties, e.g., the absorbing aerosol optical depth (AAOD) and the single scattering albedo (SSA), are important to reduce uncertainties of aerosol climate radiative forcing assessments. Currently, global retrievals of AAOD and SSA are mainly provided by the ground-based aerosol robotic network (AERONET), whereas it is still challenging to retrieve them from space. However, we found the AERONET AAOD has a relatively strong correlation with the satellite retrieved ultra-violet aerosol index (UVAI). Based on this, a numerical relation is built by a deep neural network (DNN) to predict global AAOD and SSA over land from the long-term UVAI record (2006-2019) provided by the ozone monitoring instrument (OMI) onboard Aura. The DNN predicted aerosol absorption is satisfying for samples with AOD at 550 nm larger than 0.1, and the DNN model performance is better for smaller absorbing aerosols (e.g., smoke) than larger ones (e.g., mineral dust). The comparison of the DNN predictions with AERONET shows a high correlation coefficient of 0.90 and a root mean square of 0.005 for the AAOD, and over 80% of samples are within the expected uncertainty of AERONET SSA (+/- 0.03).
英文关键词Absorbing aerosol optical depth (AAOD) deep neural network (DDN) machine learning ozone monitoring instrument (OMI) single scattering albedo (SSA) ultra-violet aerosol index (UVAI)
类型Article
语种英语
开放获取类型gold, Green Published
收录类别SCI-E
WOS记录号WOS:000704824700004
WOS关键词IMAGING SPECTRORADIOMETER MISR ; SINGLE-SCATTERING ALBEDO ; OPTICAL DEPTH PRODUCTS ; LONG-TERM RECORD ; NEURAL-NETWORK ; DESERT DUST ; VERTICAL-DISTRIBUTION ; TROPOSPHERIC AEROSOL ; INVERSION ALGORITHM ; HEIGHT RETRIEVAL
WOS类目Engineering, Electrical & Electronic ; Geography, Physical ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/363565
作者单位[Sun, Jiyunting; Veefkind, Pepijn] Royal Netherlands Meteorol Inst, Dept R&D Satellite Observat, NL-3731 De Bilt, Netherlands; [Sun, Jiyunting; Veefkind, Pepijn; Levelt, Pieternel F.] Delft Univ Technol, Dept Geosci & Remote Sensing GRS Civil Engn & Ge, NL-2628 Delft, Netherlands; [van Velthoven, Peter] Royal Netherlands Meteorol Inst, Dept R&D Weather & Climate Modeling, NL-3731 De Bilt, Netherlands; [Levelt, Pieternel F.] Natl Ctr Atmospher Res NCAR, Atmospher Chem Observat & Modeling Lab ACOM, Boulder, CO 80301 USA
推荐引用方式
GB/T 7714
Sun, Jiyunting,Veefkind, Pepijn,van Velthoven, Peter,et al. Aerosol Absorption Over Land Derived From the Ultra-Violet Aerosol Index by Deep Learning[J],2021,14:9692-9710.
APA Sun, Jiyunting,Veefkind, Pepijn,van Velthoven, Peter,&Levelt, Pieternel F..(2021).Aerosol Absorption Over Land Derived From the Ultra-Violet Aerosol Index by Deep Learning.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,14,9692-9710.
MLA Sun, Jiyunting,et al."Aerosol Absorption Over Land Derived From the Ultra-Violet Aerosol Index by Deep Learning".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 14(2021):9692-9710.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Jiyunting]的文章
[Veefkind, Pepijn]的文章
[van Velthoven, Peter]的文章
百度学术
百度学术中相似的文章
[Sun, Jiyunting]的文章
[Veefkind, Pepijn]的文章
[van Velthoven, Peter]的文章
必应学术
必应学术中相似的文章
[Sun, Jiyunting]的文章
[Veefkind, Pepijn]的文章
[van Velthoven, Peter]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。