Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1080/19942060.2021.1944913 |
Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression | |
Band, Shahab S.; Heggy, Essam; Bateni, Sayed M.; Karami, Hojat; Rabiee, Mobina; Samadianfard, Saeed; Chau, Kwok-Wing; Mosavi, Amir | |
通讯作者 | Band, SS (corresponding author), Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu, Yunlin, Taiwan. ; Mosavi, A (corresponding author), Tech Univ Dresden, Fac Civil Engn, Dresden, Germany. ; Mosavi, A (corresponding author), Obuda Univ, John von Neumann Fac Informat, Budapest, Hungary. ; Mosavi, A (corresponding author), J Selye Univ, Dept Informat, Komarno, Slovakia. |
来源期刊 | ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS
![]() |
ISSN | 1994-2060 |
EISSN | 1997-003X |
出版年 | 2021 |
卷号 | 15期号:1页码:1147-1158 |
英文摘要 | Utilizing new approaches to accurately predict groundwater level (GWL) in arid regions is of vital importance. In this study, support vector regression (SVR), Gaussian process regression (GPR), and their combination with wavelet transformation (named wavelet-support vector regression (W-SVR) and wavelet-Gaussian process regression (W-GPR)) are used to forecast groundwater level in Semnan plain (arid area) for the next month. Three different wavelet transformations, namely Haar, db4, and Symlet, are tested. Four statistical metrics, namely root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R (2)), and Nah-Sutcliffe efficiency (NS), are used to evaluate performance of different methods. The results reveal that SVR with RMSE of 0.04790 (m), MAPE of 0.00199%, R (2) of 0.99995, and NS of 0.99988 significantly outperforms GPR with RMSE of 0.55439 (m), MAPE of 0.04363%, R2 of 0.99264, and NS of 0.98413. Besides, the hybrid W-GPR-1 model (i.e. GPR with Harr wavelet) remarkably improves the accuracy of GWL prediction compared to GPR. Finally, the hybrid W-SVR-3 model (i.e. SVR with Symlet) provides the best GWL prediction with RMSE, MAPE, R2, and NS of 0.01290 (m), 0.00079%, 0.99999, and 0.99999, respectively. Overall, the findings indicate that hybrid models can accurately predict GWL in arid regions. |
英文关键词 | Groundwater level prediction hydrological model Gaussian process regression support vector artificial intelligence machine learning |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000673802000001 |
WOS关键词 | ARTIFICIAL NEURAL-NETWORK ; SUPPORT VECTOR MACHINE ; DATA-DRIVEN TECHNIQUES ; MODEL ; TEMPERATURE ; STREAMFLOW ; SYSTEM ; ANFIS ; COEFFICIENT ; PERFORMANCE |
WOS类目 | Engineering, Multidisciplinary ; Engineering, Mechanical ; Mechanics |
WOS研究方向 | Engineering ; Mechanics |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/363087 |
作者单位 | [Band, Shahab S.] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu, Yunlin, Taiwan; [Heggy, Essam] Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA 90007 USA; [Heggy, Essam] CALTECH, Jet Prop Lab, Pasadena, CA USA; [Bateni, Sayed M.] Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI 96822 USA; [Bateni, Sayed M.] Univ Hawaii Manoa, Water Resources Res Ctr, Honolulu, HI 96822 USA; [Karami, Hojat; Rabiee, Mobina] Semnan Univ, Civil Engn Dept, Semnan, Iran; [Samadianfard, Saeed] Univ Tabriz, Fac Agr, Dept Water Engn, Tabriz, Iran; [Chau, Kwok-Wing] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China; [Mosavi, Amir] Tech Univ Dresden, Fac Civil Engn, Dresden, Germany; [Mosavi, Amir] Obuda Univ, John von Neumann Fac Informat, Budapest, Hungary; [Mosavi, Amir] J Selye Univ, Dept Informat, Komarno, Slovakia |
推荐引用方式 GB/T 7714 | Band, Shahab S.,Heggy, Essam,Bateni, Sayed M.,et al. Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression[J],2021,15(1):1147-1158. |
APA | Band, Shahab S..,Heggy, Essam.,Bateni, Sayed M..,Karami, Hojat.,Rabiee, Mobina.,...&Mosavi, Amir.(2021).Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression.ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS,15(1),1147-1158. |
MLA | Band, Shahab S.,et al."Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression".ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 15.1(2021):1147-1158. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。