Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1002/ece3.8170 |
Habitat heterogeneity affects the thermal ecology of an endangered lizard | |
Gaudenti, Nicole; Nix, Emmeleia; Maier, Paul; Westphal, Michael F.; Taylor, Emily N. | |
通讯作者 | Gaudenti, N (corresponding author), Calif Polytech State Univ San Luis Obispo, Dept Biol Sci, 1 Grand Ave, San Luis Obispo, CA 93407 USA. |
来源期刊 | ECOLOGY AND EVOLUTION
![]() |
ISSN | 2045-7758 |
出版年 | 2021 |
英文摘要 | Global climate change is already contributing to the extirpation of numerous species worldwide, and sensitive species will continue to face challenges associated with rising temperatures throughout this century and beyond. It is especially important to evaluate the thermal ecology of endangered ectotherm species now so that mitigation measures can be taken as early as possible. A recent study of the thermal ecology of the federally endangered Blunt-nosed Leopard Lizard (Gambelia sila) suggested that they face major activity restrictions due to thermal constraints in their desert habitat, but that large shade-providing shrubs act as thermal buffers to allow them to maintain surface activity without overheating. We replicated this study and also included a population of G. sila with no access to large shrubs to facilitate comparison of the thermal ecology of G. sila populations in shrubless and shrubbed sites. We found that G. sila without access to shrubs spent more time sheltering inside rodent burrows than lizards with access to shrubs, especially during the hot summer months. Lizards from a shrubbed site had higher midday body temperatures and therefore poorer thermoregulatory accuracy than G. sila from a shrubless site, suggesting that greater surface activity may represent a thermoregulatory trade-off for G. sila. Lizards at both sites are currently constrained from using open, sunny microhabitats for much of the day during their short active seasons, and our projections suggest that climate change will exacerbate these restrictions and force G. sila to use rodent burrows for shelter even more than they do now, especially at sites without access to shrubs. The continued management of shrubs and of burrowing rodents at G. sila sites is therefore essential to the survival of this endangered species. |
英文关键词 | activity restriction burrows climate change shade shrubs thermoregulation |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold, Green Submitted |
收录类别 | SCI-E |
WOS记录号 | WOS:000706537300001 |
WOS关键词 | SAN-JOAQUIN DESERT ; NOSED LEOPARD LIZARDS ; BLUE-TONGUE LIZARD ; MICROHABITAT USE ; HOME-RANGE ; FACILITATION ; TEMPERATURE ; CLIMATE ; PERFORMANCE ; POPULATION |
WOS类目 | Ecology ; Evolutionary Biology |
WOS研究方向 | Environmental Sciences & Ecology ; Evolutionary Biology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/363037 |
作者单位 | [Gaudenti, Nicole; Maier, Paul; Taylor, Emily N.] Calif Polytech State Univ San Luis Obispo, Dept Biol Sci, 1 Grand Ave, San Luis Obispo, CA 93407 USA; [Nix, Emmeleia; Westphal, Michael F.] US Bur Land Management, Cent Coast Field Off, Marina, CA USA |
推荐引用方式 GB/T 7714 | Gaudenti, Nicole,Nix, Emmeleia,Maier, Paul,et al. Habitat heterogeneity affects the thermal ecology of an endangered lizard[J],2021. |
APA | Gaudenti, Nicole,Nix, Emmeleia,Maier, Paul,Westphal, Michael F.,&Taylor, Emily N..(2021).Habitat heterogeneity affects the thermal ecology of an endangered lizard.ECOLOGY AND EVOLUTION. |
MLA | Gaudenti, Nicole,et al."Habitat heterogeneity affects the thermal ecology of an endangered lizard".ECOLOGY AND EVOLUTION (2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。