Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1029/2021EA001788 |
A Machine Learning Approach to Objective Identification of Dust in Satellite Imagery | |
Berndt, E. B.; Elmer, N. J.; Junod, R. A.; Fuell, K. K.; Harkema, S. S.; Burke, A. R.; Feemster, C. M. | |
通讯作者 | Berndt, EB (corresponding author), NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. ; Berndt, EB ; Elmer, NJ (corresponding author), Short Term Predict Res & Transit Ctr, Huntsville, AL 35899 USA. |
来源期刊 | EARTH AND SPACE SCIENCE
![]() |
EISSN | 2333-5084 |
出版年 | 2021 |
卷号 | 8期号:6 |
英文摘要 | Airborne dust has broad adverse effects on human activity, including aviation, human health, and agriculture. Remote sensing observations are used to detect dust and aerosols in the atmosphere using long established techniques. False color Red-Green-Blue (RGB) imagery using band differences sensitive to dust absorption (Dust RGB) is currently used operationally to assist forecasters and decision-makers in identifying dust at night, but there are still limitations, subjectivity, and nuances to image interpretation making night-time dust identification difficult even for experts. This study applies machine learning to the problem of night-time dust detection with a simple random forest (RF) model using Geostationary Operational Environmental Satellite-16 (GOES-16) Advanced Baseline Imager (ABI) infrared imagery, band differences sensitive to dust absorption, and Dust RGB color components as inputs to the model. The RF model achieves an Area-Under-Curve (AUC) of 0.97 with a standard deviation of 0.04 for dust cases. For images with dust present, the model correctly labels 85% of dust pixels and 99.96% of no-dust pixels for all dust images in the validation data set. The addition of a single null case to the training data set drastically reduces error in labeling no-dust pixels as dust from 45% to 14.5%. Application of the machine learning model to the April 13-14, 2019 dust event demonstrates the ability of the model to identify dust during night-time hours when visual dust detection is limited by the cooling ground surface characteristics. |
英文关键词 | dust geostationary infrared machine learning multispectral remote sensing |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000667881300014 |
WOS关键词 | DESERT DUST ; DIFFERENCE ; RETRIEVAL ; TRANSPORT ; PRODUCTS ; IMPACT |
WOS类目 | Astronomy & Astrophysics ; Geosciences, Multidisciplinary |
WOS研究方向 | Astronomy & Astrophysics ; Geology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/362952 |
作者单位 | [Berndt, E. B.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA; [Elmer, N. J.] Univ Space Res Assoc, Huntsville, AL USA; [Junod, R. A.; Fuell, K. K.] Univ Alabama, Earth Syst Sci Ctr, Huntsville, AL 35899 USA; [Harkema, S. S.; Burke, A. R.; Feemster, C. M.] Univ Alabama, Coll Atmospher & Earth Sci, Huntsville, AL 35899 USA; [Berndt, E. B.; Elmer, N. J.; Junod, R. A.; Fuell, K. K.; Harkema, S. S.; Burke, A. R.; Feemster, C. M.] Short Term Predict Res & Transit Ctr, Huntsville, AL 35899 USA |
推荐引用方式 GB/T 7714 | Berndt, E. B.,Elmer, N. J.,Junod, R. A.,et al. A Machine Learning Approach to Objective Identification of Dust in Satellite Imagery[J],2021,8(6). |
APA | Berndt, E. B..,Elmer, N. J..,Junod, R. A..,Fuell, K. K..,Harkema, S. S..,...&Feemster, C. M..(2021).A Machine Learning Approach to Objective Identification of Dust in Satellite Imagery.EARTH AND SPACE SCIENCE,8(6). |
MLA | Berndt, E. B.,et al."A Machine Learning Approach to Objective Identification of Dust in Satellite Imagery".EARTH AND SPACE SCIENCE 8.6(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。