Arid
DOI10.3390/app11199199
Visual-Saliency-Based Abnormality Detection for MRI Brain Images-Alzheimer's Disease Analysis
Andrushia, A. Diana; Sagayam, K. Martin; Hien Dang; Pomplun, Marc; Quach, Lien
通讯作者Dang, H (corresponding author), Thuy Loi Univ, Fac Comp Sci & Engn, Hanoi 100000, Vietnam. ; Dang, H (corresponding author), Univ Massachusetts, Dept Comp Sci, Boston, MA 02125 USA.
来源期刊APPLIED SCIENCES-BASEL
EISSN2076-3417
出版年2021
卷号11期号:19
英文摘要In recent years, medical image analysis has played a vital role in detecting diseases in their early stages. Medical images are rapidly becoming available for various applications to solve human problems. Therefore, complex medical features are needed to develop a diagnostic system for physicians to provide better treatment. Traditional methods of abnormality detection suffer from misidentification of abnormal regions in the given data. Visual-saliency detection methods are used to locate abnormalities to improve the accuracy of the proposed work. This study explores the role of a visual saliency map in the classification of Alzheimer's disease (AD). Bottom-up saliency corresponds to image features, whereas top-down saliency uses domain knowledge in magnetic resonance imaging (MRI) brain images. The novelty of the proposed method lies in the use of an elliptical local binary pattern descriptor for low-level MRI characterization. Ellipse-like topologies help to obtain feature information from different orientations. Extensively directional features at different orientations cover the micro patterns. The brain regions of the Alzheimer's disease stages were classified from the saliency maps. Multiple-kernel learning (MKL) and simple and efficient MKL (SEMKL) were used to classify Alzheimer's disease from normal controls. The proposed method used the OASIS dataset and experimental results were compared with eight state-of-the-art methods. The proposed visual saliency-based abnormality detection produces reliable results in terms of accuracy, sensitivity, specificity, and f-measure.

英文关键词visual saliency MRI brain images classification Alzheimer's disease
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000707846500001
WOS关键词CLASSIFICATION ; DIAGNOSIS ; YOUNG
WOS类目Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
WOS研究方向Chemistry ; Engineering ; Materials Science ; Physics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/362497
作者单位[Andrushia, A. Diana; Sagayam, K. Martin] Karunya Inst Sci & Technol, Dept Elect & Commun Engn, Coimbatore 641114, Tamil Nadu, India; [Hien Dang] Thuy Loi Univ, Fac Comp Sci & Engn, Hanoi 100000, Vietnam; [Hien Dang; Pomplun, Marc] Univ Massachusetts, Dept Comp Sci, Boston, MA 02125 USA; [Quach, Lien] Providence VA Med Ctr, Providence, RI 02908 USA
推荐引用方式
GB/T 7714
Andrushia, A. Diana,Sagayam, K. Martin,Hien Dang,et al. Visual-Saliency-Based Abnormality Detection for MRI Brain Images-Alzheimer's Disease Analysis[J],2021,11(19).
APA Andrushia, A. Diana,Sagayam, K. Martin,Hien Dang,Pomplun, Marc,&Quach, Lien.(2021).Visual-Saliency-Based Abnormality Detection for MRI Brain Images-Alzheimer's Disease Analysis.APPLIED SCIENCES-BASEL,11(19).
MLA Andrushia, A. Diana,et al."Visual-Saliency-Based Abnormality Detection for MRI Brain Images-Alzheimer's Disease Analysis".APPLIED SCIENCES-BASEL 11.19(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Andrushia, A. Diana]的文章
[Sagayam, K. Martin]的文章
[Hien Dang]的文章
百度学术
百度学术中相似的文章
[Andrushia, A. Diana]的文章
[Sagayam, K. Martin]的文章
[Hien Dang]的文章
必应学术
必应学术中相似的文章
[Andrushia, A. Diana]的文章
[Sagayam, K. Martin]的文章
[Hien Dang]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。