Arid
DOI10.1016/j.apgeog.2021.102552
Combining night time lights in prediction of poverty incidence at the county level
Xu, Jianbin; Song, Jie; Li, Baochao; Liu, Dan; Cao, Xiaoshu
通讯作者Cao, XS (corresponding author), Shaanxi Normal Univ, Yunnan Guizhou Plateau Observat Stn Coupled Human, Xian 710119, Peoples R China.
来源期刊APPLIED GEOGRAPHY
ISSN0143-6228
EISSN1873-7730
出版年2021
卷号135
英文摘要Long-term poverty data can support accurate decision-making. This study demonstrates an accurate and reliable method for identifying poverty areas and predicting poverty incidence based on night time light remote-sensing data and machine learning methods. Using data of poverty counties and poverty incidence in Guizhou Province of China as the training dataset, we show how to use machine learning to identify poverty counties and predict poverty incidence in the Yunnan-Guangxi-Guizhou Rocky desertification area. The identification accuracy of poverty-stricken counties was 76.5%. The root mean squared error, mean absolute error, and R2 values of the poverty incidence rates were 5.01, 4.04, and 0.60, respectively. Using data from 2015 to verify the trained model, the R2 value of the predicted and actual values of poverty incidence reached 0.95. With the progress in machine learning and night light remote sensing, poverty mapping combined with night time lights and machine learning can compensate for the data gap in deprived areas and provide a decision-making basis for sustainable development in poverty-stricken areas.
英文关键词Night time lights Machine learning Poverty estimate Long sequence Accuracy YGGRD
类型Article
语种英语
收录类别SSCI
WOS记录号WOS:000701946700006
WOS关键词ELECTRIC-POWER CONSUMPTION ; DYNAMICS ; CHINA ; INTERCALIBRATION ; PATTERNS ; DMSP/OLS ; IMAGERY
WOS类目Geography
WOS研究方向Geography
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/362488
作者单位[Xu, Jianbin] Shanxi Univ Finance & Econ, Coll Resources & Environm, Taiyuan 030006, Peoples R China; [Song, Jie; Li, Baochao; Liu, Dan] Sun Yat Sen Univ, Sch Geog & Planning, Guangzhou 510275, Peoples R China; [Cao, Xiaoshu] Shaanxi Normal Univ, Shaanxi Normal Univ Acad Nat Resources & Territor, Xian 710119, Peoples R China; [Cao, Xiaoshu] Shaanxi Normal Univ, Yunnan Guizhou Plateau Observat Stn Coupled Human, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Xu, Jianbin,Song, Jie,Li, Baochao,et al. Combining night time lights in prediction of poverty incidence at the county level[J],2021,135.
APA Xu, Jianbin,Song, Jie,Li, Baochao,Liu, Dan,&Cao, Xiaoshu.(2021).Combining night time lights in prediction of poverty incidence at the county level.APPLIED GEOGRAPHY,135.
MLA Xu, Jianbin,et al."Combining night time lights in prediction of poverty incidence at the county level".APPLIED GEOGRAPHY 135(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Jianbin]的文章
[Song, Jie]的文章
[Li, Baochao]的文章
百度学术
百度学术中相似的文章
[Xu, Jianbin]的文章
[Song, Jie]的文章
[Li, Baochao]的文章
必应学术
必应学术中相似的文章
[Xu, Jianbin]的文章
[Song, Jie]的文章
[Li, Baochao]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。