Knowledge Resource Center for Ecological Environment in Arid Area
基于注意力机制神经网络的荒漠区蒸散量模拟 | |
其他题名 | Evapotranspiration simulation using a neural network with attention mechanism in desert regions of China |
齐建东; 买晶晶 | |
来源期刊 | 农业工程学报
![]() |
ISSN | 1002-6819 |
出版年 | 2020 |
卷号 | 36期号:22页码:151-157 |
中文摘要 | 该研究对基于注意力机制的长短期记忆(Attention-Based Long Short Term Memory,AT-LSTM)模型对蒸散量(Evapotranspiration,ET)模拟的可行性和有效性进行验证,以提高环境数据缺失情况下的 蒸散量模拟精度。基于盐池县20122017年的每30 min环境数据,利用不同环境因子组合构建基于注意力机制的LSTM模型,并将其与极限学习机(Extreme Learning Machine,ELM)模型、支持向量机(Support Vector Machine,SVM)模型、长短期记忆(Long Short Term Memory,LSTM)模型在日尺度、月尺度和季节尺度上进行对比分析。结果表明:与其他3种模型相比,当输入环境因子变化时,AT-LSTM模型模拟 精度变化很小,模拟效果均较好。当输入空气温度、净辐射、相对湿度、土壤温度、土壤含水率所有环境因子时,基于AT-LSTM模型的模拟效果最好,均方根 误差(Root Mean Square Error,RMSE)为0.013 mm/30 min,平均绝对误差(Mean Absolute Error,MAE)为0.006 mm/30 min,相关系数(Correlation Coefficient, R)值为0.905。且无论是从小时尺度、日尺度和月尺度来看,AT-LSTM模型的模拟效果均优于其他3种模型。在环境因子缺失的情况下,净辐射对盐池 县ET的模拟贡献程度最大,仅输入净辐射时,AT-LSTM模型模拟得到的RMSE和MAE分别为0.014、0.007 mm/30 min,R为0.892。AT-LSTM模型模拟精度高,模型稳定性强,对蒸散量模拟预测具有一定的适用性,仅输入净辐射的AT-LSTM模型可以作为环 境数据缺失条件下的蒸散量预测模型。 |
英文摘要 | Evapotranspiration (ET) is the sum of soil water evaporation and plant transpiration. Accurate prediction of ET can provide information and decision making for irrigation management of crops and efficient use of agriculture water. Attention-based LSTM model (AT-LSTM) is widely used in machine translation, and speech recognition. However, there is still a gap in the application of ET simulation. In this study, an evapotranspiration simulation was conducted in Yanchi county Ningxia, China, with the limited environmental data, thereby to verify the feasibility and effectiveness of an AT-LSTM model for the high accurate ET. Air temperature, net radiation, relative humidity, soil temperature, and soil water content were selected as the influential factor of ET. They were half hourly environmental factors for Yanchi county from January 1, 2012 to December 31, 2017. The ET was calculated from the latent heat flux (LE). The data from 2012 to 2016 served as the training set, and the data in 2017 served as the test set. Different combinations of environmental factors were used as the inputs to construct the AT-LSTM model, compared with the Extreme Learning Machine (ELM), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) model on daily, monthly, and seasonal scale. The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), correlation coefficient (R), and Global Performance Indicators (GPI) were used to evaluate the performance of models. Compared with ELM, SVM, and LSTM models, the simulation accuracy of AT-LSTM model changed very little, when the input environmental factors changed, where all data were better. When all meteorological factors were input, the AT-LSTM model had the best effect, with the RMSE of 0.013 mm/30min, MAE of 0.006 mm/30min, and R of 0.905. Specifically, the LSTM model was inferior to AT-LSTM model, with the RMSE of 0.014 mm/30min, MAE of 0.007 mm/30min, and R of 0.889, respectively. The simulation accuracy of ELM and SVM was lower than that of LSTM. When the air temperature, net radiation, relative humidity, soil temperature were input, the GPI of ELM and LSTM models were all 2, while the GPI of AT-LSTM model was 6. When the net radiation and soil temperature were input, the GPI of AT-LSTM model was 2, with the RMSE of 0.013 mm/30min, MAE of 0.006 mm/30min, R of 0.900. The simulation effect that produced by the combination of environmental factors was related to the selected model. When only net radiation was input, the RMSE of AT-LSTM was 0.014 mm/30min, with MAE of 0.007 mm/30min and R of 0.892. This model outperformed the LSTM, ELM and SVM models with all environmental factors input. When the net radiation was added as the input for the four models, the simulation accuracy of model was improved. When the SWC was used as the input, the RMSE of AT-LSTM model was 0.016 mm/30min, with MAE of 0.008 mm/30min, R of 0.859, while, the simulation accuracy of SVM, ELM and LSTM was much lower than AT-LSTM. Compared with other models, the simulation results of AT-LSTM model were closer to the real value on the daily and seasonal scale. |
中文关键词 | 蒸散量 ; 深度学习 ; 注意力机制 ; 长短期记忆神经网络 ; 盐池县 |
英文关键词 | evapotranspiration deep learning attention mechanism LSTM Yanchi county |
类型 | Article |
语种 | 中文 |
收录类别 | CSCD |
WOS类目 | Environmental Sciences & Ecology |
CSCD记录号 | CSCD:6906640 |
来源机构 | 北京林业大学 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/353690 |
作者单位 | 齐建东, 北京林业大学信息学院;;国家林业草原林业智能信息处理工程技术研究中心, ;;国家林业草原林业智能信息处理工程技术研究中心, ;;, 北京;;北京 100083;;100083, 中国. 买晶晶, 北京林业大学信息学院;;国家林业草原林业智能信息处理工程技术研究中心, ;;国家林业草原林业智能信息处理工程技术研究中心, ;;, 北京;;北京 100083;;100083, 中国. |
推荐引用方式 GB/T 7714 | 齐建东,买晶晶. 基于注意力机制神经网络的荒漠区蒸散量模拟[J]. 北京林业大学,2020,36(22):151-157. |
APA | 齐建东,&买晶晶.(2020).基于注意力机制神经网络的荒漠区蒸散量模拟.农业工程学报,36(22),151-157. |
MLA | 齐建东,et al."基于注意力机制神经网络的荒漠区蒸散量模拟".农业工程学报 36.22(2020):151-157. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[齐建东]的文章 |
[买晶晶]的文章 |
百度学术 |
百度学术中相似的文章 |
[齐建东]的文章 |
[买晶晶]的文章 |
必应学术 |
必应学术中相似的文章 |
[齐建东]的文章 |
[买晶晶]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。