Knowledge Resource Center for Ecological Environment in Arid Area
利用多源光谱信息反演宁夏银北地区干湿季土壤含盐量 | |
其他题名 | Inversion of soil salinity in dry and wet seasons based on multi-source spectral data in Yinbei area of Ningxia, China |
贾萍萍; 尚天浩; 张俊华; 孙媛 | |
来源期刊 | 农业工程学报
![]() |
ISSN | 1002-6819 |
出版年 | 2020 |
卷号 | 36期号:17页码:125-134 |
中文摘要 | 土壤盐渍化是导致全球荒漠化和土壤退化的主要诱因之一。为确定高光谱和多光谱遥感反演干湿季土壤含盐量的最优模型,该研究以宁夏银北平罗县为例,以干季( 4月)和湿季(10月)实测高光谱和Landsat 8 OLI多光谱以及干湿两季实测土壤含盐量为基础数据源,利用相关系数法、灰度关联法和逐步回归法筛选敏感光谱数据,分别采用偏最小二乘、支持向量机、岭回 归、BP神经网络和地理加权回归建立干湿两季土壤含盐量反演模型。结果表明:1)银北地区土壤盐渍化较为严重,干湿季含盐量均表现为强度变异,且干季变异 程度大于湿季;2)在不同土壤含盐量条件下,重采样后的高光谱波段反射率和影像波段反射率具有显著相关性;3)对比相关性分析、灰度关联和逐步回归三组变 量筛选方法下各模型R2和RMSE,逐步回归组模型整体效果较好;4)5种土壤含盐量反演模型中地理加权回归模型精度较高,支持向量机算法和BP神经网络 算法在基于不同变量组的模型中表现较为接近,岭回归表现最差,偏最小二乘回归模型出现了较严重的"过拟合"现象。局部模型在土壤含盐量反演方面更具优越性 。干季以实测灰度关联组-地理加权回归模型效果最佳,其验证决定系数Rp2和相对分析误差RPD分别为0.94和4.49;湿季以影像相关系数组-地理加 权回归模型反演效果最好,其验证决定系数Rp2和相对分析误差RPD分别为0.96和4.83。研究结果可为当地及同类地区土壤盐渍化的识别、防治提供理 论依据。 |
英文摘要 | Soil salinization is one of the main causes of global desertification and soil degradation. Information data about salinity and alkalinity is essential to the treatment of alkalized soil for preventing its further degradation and sustainable development of agriculture. Soil salinization is often characterized with significant spatiotemporal dynamics. Taking the saline soil in Pingluo County as the research object, which is predominant in the Ningxia Yinbei area of Northwestern China, this study aims to explore the salt content of soil in dry and wet seasons, and then compare the accuracy of local models and global models, further to determine the optimal model for retrieving soil salinity using the hyperspectral and multispectral remote sensing. The specific processing is following, based on hyperspectral and Landsat 8 OLI image data in the dry season (April) and wet season (October), First, the hyperspectral data was resampled to the image band range for matching the two, whereas, the 11 salt indices under the two spectral data were calculated separately. Second, different algorithms including pearson correlation coefficient (PCC), stepwise regression (SR) and gray relational analysis (GRA) were applied for the sensitive band and index screening of the measured and image spectral data in the dry and wet seasons. Finally, the quantitative analysis models for soil salinity were established using the partial least squares regression (PLSR), support vector machine (SVM), ridge regression (RR), BP neural networks (BPNN), and geographically weighted regression (GWR) method, respectively. All these regression models were verified to select the optimal model, after comparing the effects of different input variables and different regression methods on the model precision. The results showed that: 1) The soil of the Yinbei region was strongly salt-affected, and the salt content in the wet and dry season was characterized by the intensity variation, where the variation degree of dry season was much higher than that of the wet season. 2) The resampling bands showed a good correlation with the image bands data under different soil salinity. 3) The SR group model achieved the best inversion effect, whereas, the PC and GC groups indicated advantages and disadvantages in different regression algorithms, after comparing of the R2, RMSE and RPD of the salt salinity inversion model under the three filter variables of PCC, GC and SR. 4) In the five inversion models of soil salinity, the GWR model showed a higher accuracy. The SVM and BPNN algorithm performed similarly in the models, based on different variable groups, whereas, the RR performance was the worst, particularly a serious "overfitting" phenomenon in the PLSR model. The evaluation results demonstrated the superiority of the local regression over the global regression model for soil salinity. The measured GC-GWR model in dry season achieved the best inversion effect, where the values of RP2 and RPD were 0.94 and 4.49, in the wet season, whereas, the imaged PCC-GWR model obtained the best inversion effect, where the values of RP2 and RPD were 0.96 and 4.83. These findings can contribute to tackling the regional land salinization and degradation, as well as identification and prevention of soil salinization in local and similar areas, further to soil salinization monitoring and land reclamation in arid or semi-arid regions outside the current study area. |
中文关键词 | 遥感 ; 反演 ; 模型 ; 土壤含盐量 ; 光谱指数 ; GWR模型 |
英文关键词 | remote sensing inversion models soil salt spectral index GWR model |
类型 | Article |
语种 | 中文 |
收录类别 | CSCD |
WOS类目 | Agriculture |
CSCD记录号 | CSCD:6834762 |
来源机构 | 宁夏大学 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/353683 |
作者单位 | 贾萍萍, 宁夏大学资源环境学院;;宁夏大学环境工程研究院;;宁夏旱区资源评价与环境调控重点实验室, ;;;;宁夏旱区资源评价与环境调控重点实验室, 银川;;银川;;银川, ;;;; 750021;;750021;;750021. 尚天浩, 宁夏大学资源环境学院;;宁夏大学环境工程研究院;;宁夏旱区资源评价与环境调控重点实验室, ;;;;宁夏旱区资源评价与环境调控重点实验室, 银川;;银川;;银川, ;;;; 750021;;750021;;750021. 张俊华, 宁夏大学资源环境学院;;宁夏大学环境工程研究院;;宁夏旱区资源评价与环境调控重点实验室, ;;;;宁夏旱区资源评价与环境调控重点实验室, 银川;;银川;;银川, ;;;; 750021;;750021;;750021. 孙媛, 宁夏大学资源环境学院;;宁夏大学环境工程研究院;;宁夏旱区资源评价与环境调控重点实验室, ;;;;宁夏旱区资源评价与环境调控重点实验室, 银川;;银川;;银川, ;;;; 750021;;750021;;750021. |
推荐引用方式 GB/T 7714 | 贾萍萍,尚天浩,张俊华,等. 利用多源光谱信息反演宁夏银北地区干湿季土壤含盐量[J]. 宁夏大学,2020,36(17):125-134. |
APA | 贾萍萍,尚天浩,张俊华,&孙媛.(2020).利用多源光谱信息反演宁夏银北地区干湿季土壤含盐量.农业工程学报,36(17),125-134. |
MLA | 贾萍萍,et al."利用多源光谱信息反演宁夏银北地区干湿季土壤含盐量".农业工程学报 36.17(2020):125-134. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[贾萍萍]的文章 |
[尚天浩]的文章 |
[张俊华]的文章 |
百度学术 |
百度学术中相似的文章 |
[贾萍萍]的文章 |
[尚天浩]的文章 |
[张俊华]的文章 |
必应学术 |
必应学术中相似的文章 |
[贾萍萍]的文章 |
[尚天浩]的文章 |
[张俊华]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。