Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1145/mod0251 |
Continuously Adaptive Similarity Search | |
Zhang, Huayi; Cao, Lei; Yan, Yizhou; Madden, Samuel; Rundensteiner, Elke A. | |
通讯作者 | Zhang, HY (corresponding author), Worcester Polytech Inst, Worcester, MA 01609 USA. |
会议名称 | ACM SIGMOD International Conference on Management of Data (SIGMOD) |
会议日期 | JUN 14-19, 2020 |
会议地点 | ELECTR NETWORK |
英文摘要 | Similarity search is the basis for many data analytics techniques, including k-nearest neighbor classification and outlier detection. Similarity search over large data sets relies on i) a distance metric learned from input examples and ii) an index to speed up search based on the learned distance metric. In interactive systems, input to guide the learning of the distance metric may be provided over time. As this new input changes the learned distance metric, a naive approach would adopt the costly process of re-indexing all items after each metric change. In this paper, we propose the first solution, called OASIS, to instantaneously adapt the index to conform to a changing distance metric without this prohibitive re-indexing process. To achieve this, we prove that locality-sensitive hashing (LSH) provides an invariance property, meaning that an LSH index built on the original distance metric is equally effective at supporting similarity search using an updated distance metric as long as the transform matrix learned for the new distance metric satisfies certain properties. This observation allows OASIS to avoid recomputing the index from scratch in most cases. Further, for the rare cases when an adaption of the LSH index is shown to be necessary, we design an efficient incremental LSH update strategy that re-hashes only a small subset of the items in the index. In addition, we develop an efficient distance metric learning strategy that incrementally learns the new metric as inputs are received. Our experimental study using real world public datasets confirms the effectiveness of OASIS at improving the accuracy of various similarity search-based data analytics tasks by instantaneously adapting the distance metric and its associated index in tandem, while achieving an up to 3 orders of magnitude speedup over the state-of-art techniques. |
英文关键词 | Distance metric learning Nearest neighbor search LSH |
来源出版物 | SIGMOD'20: PROCEEDINGS OF THE 2020 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA |
出版年 | 2020 |
页码 | 2601-2616 |
ISBN | 978-1-4503-6735-6 |
出版者 | ASSOC COMPUTING MACHINERY |
类型 | Proceedings Paper |
语种 | 英语 |
收录类别 | CPCI-S |
WOS记录号 | WOS:000644433700171 |
WOS类目 | Computer Science, Information Systems |
WOS研究方向 | Computer Science |
资源类型 | 会议论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/353180 |
作者单位 | [Zhang, Huayi; Yan, Yizhou; Rundensteiner, Elke A.] Worcester Polytech Inst, Worcester, MA 01609 USA; [Cao, Lei; Madden, Samuel] MIT, CSAIL, Cambridge, MA 02139 USA |
推荐引用方式 GB/T 7714 | Zhang, Huayi,Cao, Lei,Yan, Yizhou,et al. Continuously Adaptive Similarity Search[C]:ASSOC COMPUTING MACHINERY,2020:2601-2616. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。